Low-Q DIS and $\nu(\bar{\nu})$ charm production data in the global fit of PDFs

Sergey Alekhin IHEP Protvino

Sergey Kulagin

INR Moscow

Roberto Petti University of South Carolina, USA

Fermilab, May 30 - June 3, 2007 NuInt 07: 5th Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region

<u>OUTLINE</u>

- I Introduction
- Motivations
- Kinematics and phenomenological parameterizations

II Results from charged lepton scattering

- Data sets and uncertainties
- ✤ Relevance of low-Q Deep Inelastic Scattering (DIS) data
- Interplay between Leading and Higher Twists
- Uncertainties on Parton Distribution Functions (PDF)

III Application to neutrino (antineutrino) scattering

- Implications for the Paschos-Wolfenstein relation
- Determination of strange sea distributions and asymmetry
- Impact of neutrino (antineutrino) data on global fits

MOTIVATIONS

- The charged lepton DIS cross-section falls with the transferred momentum Q as $1/Q^4$ and the biggest part of experimental data is collected at low Q values.
- The rate of QCD evolution of the DIS structure functions rises at small Q, therefore the sensitivity to the strong coupling constant is higher in this region.
- The QCD is valid only at asymptotically big values of Q and at small Q the power corrections (High Twists terms) have to be taken into account. Due to their nonper-turbative nature, only phenomenological studies of existing data can constrain power corrections and therefore define the region of validity of perturbative QCD.
- A clarification of the low-Q region is crucial for modeling low energy $\nu(\bar{\nu})$ interactions.

KINEMATICS OF INCLUSIVE DIS DATA

- Regular practice followed is to cut the low-Q (low-W) data to avoid potentially dangerous regions, however is such case a lot of precise data is lost
- Extend the kinematic region used for global fits to $Q^2 > 1.0 \text{ GeV}^2$ and W > 1.8 GeV and study impact of low Q data
- Compare results with the previous default fit with $Q^2 > 2.5 \text{ GeV}^2$

STRUCTURE FUNCTION PHENOMENOLOGY

Structure functions are parameterized in the NNLO QCD approximation by taking into account of the Target Mass Corrections (TMC) following Georgi-Politzer prescription and the dynamical High Twist (HT) terms:

$$F_{2,T}(x,Q^2) = F_{2,T}^{\text{LT,TMC}}(x,Q^2) + \frac{H_{2,T}^{\tau 4}}{Q^2} + \frac{H_{2,T}^{\tau 6}}{Q^4} \quad (OPE)$$

The fixed-target Drell-Yan (DY) data are included into the sample for better determination of the sea PDFs. The DY cross-sections are also calculated at NNLO.

• The Leading Twist (LT) parton distributions are parameterized at $Q_0^2 = 9$ GeV² as:

$$xp(x) = Ax^{\alpha}(1-x)^{\beta}x^{ax+bx^2}$$

- The dynamical Twist-4,6 terms $(H_{2,T}^{\tau 4,\tau 6})$ describing multi-parton correlations are parameterized as cubic splines with the values at x = 0.1, 0.3, 0.5, 0.7, 0.9 fitted from data. Few constraints are imposed:
 - $H_{2,T}^{\tau 4,\tau 6}(0) = 0$ since no clear evidence for saturation effects is found at HERA;
 - $H_{2,T}^{\tau 6} = 0$ at x > 0.5 due to the impossibility to extract them out of the resonance region.

IMPACT OF DATA DISCREPANCIES

- ♦ A mismatch between SLAC and BCDMS data at Q² = 5 ÷ 10 GeV² but different y produces artificial Twist-6 terms in the global fit including low-Q data
- The behaviour of the fake Twist-6 terms contradicts the OPE convergence and distorts the F_T structure function (see our talk in the previous session)
- The final global fits are therefore performed by imposing $\underline{H^{\tau 6} \equiv 0}$ in the whole x range

RESCALING EXPERIMENTAL UNCERTAINTIES

- Increase the experimental uncertainties in SLAC and BCDMS data in order to achieve consistency between data sets. Rescaling of errors if | pull |> 1.5.
- Despite the estimation of the uncertainty is very conservative $(\chi^2/DOF = 679/1275)$ for SLAC and 429/605 for BCDMS) the impact of such rescaling is found to be marginal

- The error rescaling was applied to all data sets with $\chi^2/DOF > 1$ in order to bring it equal to unity
- ♦ After the rescaling of experimental uncertainties we obtain $\chi^2/DOF = 2934/3067$ for the complete data set

RELEVANCE OF LOW Q DATA

• The extrapolation of the fit with $Q^2 > 2.5$ GeV² does not describe data at lower Q^2

• The region $1.0 < Q^2 < 2.5$ GeV² contains crucial information to determine High Twists

INTERPLAY BETWEEN LT AND HT

Improved separation of the Leading and Higher twists with the low-Q data included in the global fit (final without twist-6)

 \implies Largest correlation with gluons.

The value of α_s is stable with respect to the Q² lower cut and it is in agreement with the non-singlet NNLO determination by Blumlein-Bottcher-Guffanti:

Analysis	$\alpha_s(M_Z)$	
$Q^2 > 1.0 \; { m GeV^2} \ Q^2 > 2.5 \; { m GeV^2} \ { m BBG}$	$\begin{array}{c} \textbf{0.1128} \pm \textbf{0.0011} \\ \textbf{0.1125} \pm \textbf{0.0014} \\ \textbf{0.1134} \pm \textbf{0.0018} \end{array}$	
$Q^2>1.0 {\it GeV^2}$ with twist-6	0.1093 ± 0.0011	

UNCERTAINTIES ON PARTON DISTRIBURIONS

IMPLICATIONS FOR PASCHOS-WOLFENSTEIN RELATION

The Paschos-Wolfenstein relation can be used to determine experimentally the weak mixing angle from Neutral Current (NC) and Charged Current (CC) interactions:

$$R^{-} = \frac{\sigma_{\rm NC}^{\nu} - \sigma_{\rm NC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\nu} - \sigma_{\rm CC}^{\bar{\nu}}} \approx \frac{1}{2} - s_W^2 + \delta R_{\rm tot}^{-}$$

where $s_W^2 = \sin^2 \theta_W$ with θ_W weak mixing angle

$$\delta R_{\text{tot}}^{-} = \left(\frac{x_1^{-}}{x_0^{-}}\right)_A \left(1 - \frac{7}{3}s_W^2 + \mathcal{O}(\alpha_s)\right) \approx \frac{Z - N}{A} \left(\frac{x_1^{-}}{x_0^{-}}\right)_p \left(1 - \frac{7}{3}s_W^2\right)$$

with $x_{0,1}^- = \int x(u_{\rm val} \pm d_{\rm val}) dx$

• For iron target magnitude of δR^- is about 10 times the errors from NuTeV measurement of R^- . Therefore, the uncertainty in $(x_1^-/x_0^-)_p$ must be $\ll 10\%$ ($\ll 0.04$ by absolute value)

PDF set	Order	$(x_1^-/x_0^-)_p$
CTEQ6 MRST01 A02M	NLO NLO NNLO	$\begin{array}{c} 0,42 \pm 0.03 \\ 0.43 \pm 0.02 \\ 0.43 \pm 0.03 \end{array}$
ANPU/	ININLO	0.424 ± 0.000

 \implies Improvement by a factor of five in the x_1^-/x_0^- overall uncertainty

DETERMINATION OF STRANGE SEA

Available dimuon statistics:

Туре	NuTeV	CCFR	Total
$ u $ $ \bar{ u} $	5012	5030	10042
	1458	1060	2518

• Charm production in ν N DIS is a direct probe of the strange content of the nucleon:

$$\frac{d\sigma_{\mu^{\pm}\mu^{\mp}}}{dxdy} = \int d\Gamma d\Omega \frac{d\sigma_{\mu^{\mp}c}}{dxdyd\Gamma} \times D_c(\Gamma) \times \Delta_c(\Omega) \mid_{E_{\mu^{\pm}} > 5 \ GeV}$$

where $D_c(\Gamma)$ is the charm fragmentation function and $\Delta_c(\Omega)$ the decay distribution.

Add dimuon $\nu(\bar{\nu})$ cross-section data from NuTeV and CCFR to global fit of charged lepton DIS and Drell-Yan data. Use NLO acceptance corrections for fragmentation $(E_{\mu^{\pm}} > 5 \ GeV)$ kindly provided by D. Mason.

- As a first step try to use a fixed parameterization of s(x) from CCFR determination in Z.Phys.C 65 (1995) 189.
- Problems to describe the complete set of CCFR points with QCD Q² evolution. If s(x) parameterized from high Q², discrepancies at the lower Q² values and even negative values obtained in the extrapolation to low x and Q².
- Choose an intermediate Q² value and compare with direct extraction from the fit to dimuon cross-section data.

◆ Calculation of the charm cross-section in global fits performed at NLO in the fixed flavour scheme ($N_f = 3$). The mass of charm quark is initially set $m_c = 1.5$ GeV (hep-ph/0109084) and later determined from the fit itself.

• Semileptonic branching ratio fixed at $B_c = 0.10 \pm 0.01$ from previous determinations.

 Compare independent determinations of s(\$\vec{s}\$) from NuTeV and CCFR data:

 $xs(x) = Ax^{\alpha}(1-x)^{\beta}$

where A, α and β can be different for s(x) and $\bar{s}(x)$ distributions

- Results from NuTeV cross-section data (red) are very close to the parameterization previously defined from CCFR s(x) extraction (yellow).
- Results from CCFR data (blue) are somewhat higher at small x values, although the worse precision does not change dramatically the combined results (green).

STRANGE SEA ASYMMETRY

- Independent parameters are used for s(x) and s
 (x), thus allowing the possibility of strange sea asymmetry
- ♦ Initially do not impose constraints on $\int_0^1 x(s-\overline{s})dx$ to check unbiased results.
- The curve extracted from NuTeV data (red) is consistent with what reported by the NuTeV analysis (D. Mason).
- The fit to CCFR data (blue) gives opposite sign for the asymmetry, so that the combined result (green) is consistent with zero in the whole x range.

STRANGE SEA SUPPRESSION

Calculate the overall strange sea suppression factor η as:

 $\eta = \frac{\int_0^1 \left[x s(x) + x \bar{s}(x) \right] dx}{\int_0^1 \left[x \bar{u}(x) + x \bar{d}(x) \right] dx}$

- The value of η is strongly Q^2 dependent.
- Our results from the global fit provide $\eta = 0.61$ at $Q^2 = 20$ GeV², which is substantially higher than typical numbers obtained by CCFR/NuTeV (0.42).
- It must be noted η is deeply connected to the specific parameterization of parton densities used

IMPACT OF $u(ar{ u})$ DIS ON GLOBAL FITS

- Charm dimuon production in $\nu(\bar{\nu})$ DIS provides a direct probe of the strange sea quark distributions:
 - Charged lepton DIS and Drell-Yan data have marginal sensitivity to s(x) and $\bar{s}(x)$
 - The NuTeV and CCFR data allow the determination of both s(x) and the asymmetry $s(x) \bar{s}(x)$
 - A new measurement is expected from the NOMAD experiment with a statistics of about 13,000 charm dimuons after background subtraction.
- The inclusive $\nu(\bar{\nu})$ A differential cross-section allows the extraction of the dynamical High Twist contribution to xF_3 (twist-4 $H_3^{\tau 4}$):
 - External constraints on $H_2^{\tau 4}$ and $H_T^{\tau 4}$ from charged lepton DIS
 - Simultaneous determination of $H_3^{\tau 4}$ $H_2^{\tau 4}$ and $H_T^{\tau 4}$ by global fit.
- Large potential of $\nu(\bar{\nu})$ A differential cross-sections on the determination of the Leading Twist, due to the precise sea/valence and flavour separation. However, discrepancies among existing data sets do not allow to fully exploit it at present.

SUMMARY

- The low-Q region of DIS data down to $Q^2 = 1.0$ GeV² plays an important role:
 - Improved separation of Leading from Higher Twists
 - Crucial information to model low-Q cross-sections
 - Reduced uncertainties on α_s and d/u separation
- The dynamical Twist-4 terms contribute to structure functions at $Q^2 < 10$ GeV² and affect uncertainties on the Leading Twist, in particular for α_s and gluons
- Charm dimuon data from $\nu(\bar{\nu})$ DIS provide valuable constraints on strange sea:
 - Some differences found between NuTeV and CCFR data samples
 - Combined analysis of NuTeV and CCFR data within global fits indicates a strange sea asymmetry $s(s) \bar{s}(x)$ consistent with zero within errors in the whole x range
 - Overall strange sea suppression factor $\eta=0.61$ obtained at $Q^2=20~{\rm GeV^2}$
- The new set of PDFs from the extended low-Q fit is now ready and will be released soon together with the corresponding High Twist parameterizations.