

Masaki Ishitsuka, Indiana University For the NOvA collaboration

Nulnt07 Fifth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region May 30, 2007 - June 3, 2007 Fermilab, Batavia, Illinois USA

NOvA: NuMI Off-axis v_e Appearance

\oplus Study of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation

• Sensitivity is an order of magnitude beyond current limit to θ_{13}

 \blacktriangleright Potential to determine mass hierarchy and CP-violating phase δ depending on parameters.

\Phi Further improvement of $v_{\mu} \rightarrow v_{\tau}$ oscillation measurement

NOvA aims physics targets with:

- ✓ Intense neutrino and anti-neutrino beams by NuMI.
- ✓ Two identical detectors with 810km baseline.
- ✓ Narrow-band beam at off-axis detectors sites.
- ✓ Optimized detector technology for electron signals.

NuMI Off-axis beam

14.6mrad off-axis narrow-band beam on oscillation maximum.

Accelerator and NuMI upgrade prior to NOvA:

- 120GeV protons from Main Injector
- ▶ 700kW → 1.2MW
- ► 4.9E13ppp (6E20POT/yr) → 8.3E13ppp (10E20POT/yr)
- ▶ 1.3 second cycle time
- 12 Booster batches/cycle

NOvA Near Detector

Totally Active Scintillator Detector

- Same technology as NOvA Far Detector
- 209T total mass
- 126T active detector mass
- Segmented by 6x3.9(5.7x3.8) cm² cell
- # 64(H)x96(V) Scintillator Cells
- 196 active planes
- = 10 steel planes in Muon Catcher

NOvA Detector Technology

20PE from Muon at far end in the NOvA FD (15.7m)

Near Detector Location

Plan is alcove in MINOS tunnel:

- ~1km downstream from target.
- Same 14.6mrad off-axis provides very similar flux as NOvA Far Detector.

v_{μ} charged-current interaction in NOvA

Larger energy deposit at the end track is available to identify recoil protons.

v_e charged-current interaction

Pion is identified as second track.

Low energy neutral-current interaction

Low energy neutral-current interactions are easily distinguished from charged-current interactions.

High energy neutral-current interaction

- Two tracks from π^0 decay are reconstructed.
- High energy NC interactions are distinguished from CC by the event topologies.

Charged-current coherent π

• No evidence of coherent pion production was observed in the K2K experiment $(\sigma_{coh}/\sigma_{CC} < 0.6x10^{-2} \text{ at } 90\%$ CL, M. Hasegawa et al., Phys.Rev.Lett. 95 (2005) 252301)

• NOvA aims to confirm the result by the Near Detector.

Performance of event classification

Neutral-current measurement

NOvA neutral-current sample selected by Artificial Neural Network.

• Neutral current π^0 production is main background to v_e appearance signal in the NOvA Far Detector.

Measurement of NC cross-section in the Near Detector reduces systematic errors of oscillation measurement.

Neutral-current interactions are selected by event topologies e.g. two γ tracks from π^0 decay

Signal for tests to exotic models, which include neutrino decay, sterile neutrinos.

v_{μ} charged-current QE/non-QE measurement

NOvA charged-current QE and non-QE samples each selected by ANN.

- \bullet ν_µ CC QE is signal of ν_µ→ν_τ oscillation.
- * v_{μ} CC non-QE could be background with relatively worse energy resolution than CC QE due to hadronic energies.
- v_{μ} CC interactions are easily distinguished from NC or v_e CC with clear muon track.

Prototype

IPND: Integration Prototype Near Detector

- ✤ Test production of all detector elements.
- To be located at MINOS service building.
- Taking data from late 2007/early 2008.

Low energy beam configuration.

Flux is dominated by K decays at 107mrad off-axis.

Summary

NOvA will search for v_e appearance an order of magnitude beyond the current limit to θ_{13} .

- ▶ Intense neutrino and anti-neutrino beam from upgraded NuMI.
- ▶ Narrow-band beam on oscillation maximum at off-axis detector site.
- ▶ Fine grained totally active large detector.

NOvA Near Detector will make precise measurements

- ► Same technology as NOvA Far Detector.
- Almost identical spectrum shape is expected with same off-axis beam.
- ► Large statistic events is available in the Near Detector.

Precise measurements of neutrino cross-sections will be achieved by NOvA Near Detector with high performance of particle identifications.