Neutrinos at the Spallation Neutron Source

Kate Scholberg, Duke University NUINT 2007

OUTLINE

A free neutrino source!

- The SNS at Oak Ridge National Lab
- Neutrino source properties
- **Supernova-related cross-sections**
 - Supernova physics
 - Supernova neutrino detection
- **The Nu-SNS project**
 - Site and collaboration
 - Proposed detectors
- **Other possible physics topics**
 - Coherent NC elastic scattering

Progress and Prospects

Spallation Neutron Source at Oak Ridge National Lab, Tennessee

1\$B facility for neutron science: most intense pulsed neutron beams in the world for chemistry, materials science, engineering, structural biology... Proton linear accelerator, initial operation at 1.0 GeV; upgrade to 1.3 GeV planned

Accumulator ring, 400 ns pulse width

Proton beam bombards liquid Hg target

24 μ C/pulse at 60 Hz \Rightarrow 1.4 MW power

SNS Status and Schedule

- beam construction basically complete (neutron instruments still under construction)
- first beam in 2006, up to 10 kW
- attained 100 kW in April 2007
- continuing to ramp up, 175 kW in Sept?
- full power in 2009
- possible eventual upgrade to 2-5 MW (2012?)

SNS Beam History

From J. Galambos, A. Aleksandrov, Y. Efremenko

Neutrinos are a free by-product!

~0.13 per flavor per proton

In addition to kicking out neutrons, protons on target create copious pions:

π⁻ get captured;
π⁺ slow and
decay at rest

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad 2-bo$ $\mu^{+} \rightarrow e^{+} + \overline{\nu_{\mu}} + e^{+} + \overline{\nu_{\mu}} + e^{-} + \overline{$

2-body decay: monochromatic 29.9 MeV v_{μ} PROMPT

> 3-body decay: range of energies between 0 and $m_{\mu}/2$ DELAYED (2.2 μ s)

More detailed calculation of the spectra

F. Avignone and Y. Efremenko, J. Phys. G: 29 (2003) 2615-2628

Neutrino flux: few times 10⁷/s/cm² at 20 m

Time structure of the source

Background rejection factor ~few x 10⁻⁴

Previous neutrino experiments at stopped-pion neutrino sources

KARMEN at ISIS (RAL)

Comparison of stopped-pion neutrino sources

	LANSCE	ISIS	SNS	JSNS
Location	USA (LANL)	UK (RAL)	US (ORNL)	Japan (J-PARC)
Proton energy	0.8 GeV	0.8 GeV	1 (1.3) GeV	3 GeV
Beam current	70 μ Α	0.2 mA	1.1 mA	0.33 mA
Time structure	Continuous	Two 200 ns bunches separated by 300 ns	380 ns FWHM	1 µs
Repetition rate	N/A	50 Hz	60 Hz	25 Hz
Power	56 kW	160 kW	>1 MW	1 MW
Target	Various	Water- cooled tantalum	Mercury	Mercury

-very high intensity v's -~below K threshold

-very little DIF

-narrow pulses

What physics can we do with this intense, pulsed source of tens of MeV v's?

- supernova-related cross-section studies
- coherent NC scattering
- neutrino oscillation

Supernova neutrino spectrum overlaps very nicely with stopped π neutrino spectrum!

Study CC and NC interactions with various nuclei, in few to 10's of MeV range

 Understanding of *core-collapse SN processes*, nucleosynthesis
 Understanding of *SN v detection* processes So far only ¹²C is the only heavy nucleus with v interaction x-sections well (~10%) measured in the tens of MeV regime!

Core collapse dynamics

Understanding of electron capture is vital for understanding the core collapse mechanism

 ν_{e} + A(Z,N) \leftrightarrow A(Z+1,N-1) + e⁻

 $\nu_{\rm e}$ cross-sections on nuclei

up to A~100 needed

Neutrino opacities are also important: help to understand prompt vs delayed explosion mechanism

Supernova nucleosynthesis

Neutrino reactions affect the distribution of SN-produced elements, and may produce rare isotopes

Supernova neutrino detection

Learn about core collapse and neutrino properties from flavor, energy, time structure of the burst

Require NC sensitivity for $v_{\mu,\tau}$, since SN v energies below CC threshold

Sensitivity to different flavors and ability to tag interactions is key! $v_e vs \overline{v}_e vs v_x$ Supernova neutrino detection channels

<u>Inverse beta decay:</u> $\overline{v} + p \rightarrow e^+ + n$

- dominates for detectors with lots of free p (water, scint)

- \overline{v}_{e} sensitivity; good E resolution; well known x-scn; some tagging, poor pointing

Elastic scattering: few % of invβdk, but point!

CC interactions w/ nuclei:

- lower rates, but still useful, v_e tagging useful
- x-scns not well known

ν_{e} + (N,Z) → (N-1, Z+1) + e^{-1} $\overline{\nu}_{e}$ + (N, Z) → (N+1, Z-1) + e^{+1}

NC interactions w/ nuclei:

- very important for physics, probes μ and τ flux
- some rate in existing detectors; new ones proposed
- x-scns not well known

$$v_{x} + (A,Z) \rightarrow (A-1,Z) + n + v_{x}$$
$$v_{x} + (A,Z) \rightarrow (A,Z)^{*} + v_{x}$$
$$\downarrow (A,Z) + \gamma$$

Supernova neutrino detectors, current & future

Detector	Туре	Mass (kton)	Location	Events at 8.5 kpc	Status
Super-K	Water	32	Japan	7000	Running as SK III
SNO	Heavy	1(D ₂ O)	Canada	400	Running until
	water	1.4(H ₂ O)		450	end of 2006
LVD	Scintillator	1	Italy	200	Running
KamLAND	Scintillator	1	Japan	300	Running
Botexino	Scintillator	0.3	Italy	100	200x
Baksan	Scintillator	0.33	Russia	50	Running
Mini-BooNE	Scintillator	0.7	USA	200	Running
AMANDA/	Long string	0.4/PMT	Antarctica	N/A	Running
IceCube					
Icarus	LAr	2.4	Italy	200	200x
					_
CLEAN	Ne, Ar	0.01	Canada, USA?	30	proposed
CLEAN HALO	Ne, Ar Pb	0.01	Canada, USA? Canada	30 40	proposed proposed
CLEAN HALO SNO+	Ne, Ar Pb Scintillator	0.01 0.1 1	Canada, USA? Canada Canada	30 40 300	proposed proposed proposed
CLEAN HALO SNO+ MOON	Ne, Ar Pb Scintillator ¹⁰⁰ Mo	0.01 0.1 1 0.03	Canada, USA? Canada Canada ?	30 40 300 20	proposed proposed proposed proposed
CLEAN HALO SNO+ MOON NOvA	Ne, Ar Pb Scintillator ¹⁰⁰ Mo Scintillator	0.01 0.1 1 0.03 20	Canada, USA? Canada Canada ? USA	30 40 300 20 4000	proposed proposed proposed proposed proposed
CLEAN HALO SNO+ MOON NOVA OMNIS	Ne, Ar Pb Scintillator ¹⁰⁰ Mo Scintillator Pb	0.01 0.1 1 0.03 20 2-3	Canada, USA? Canada Canada ? USA USA?	30 40 300 20 4000 >1000	proposed proposed proposed proposed proposed proposed
CLEAN HALO SNO+ MOON NOVA OMNIS LANNDD	Ne, Ar Pb Scintillator ¹⁰⁰ Mo Scintillator Pb LAr	0.01 0.1 1 0.03 20 2-3 70	Canada, USA? Canada Canada ? USA USA? USA?	30 40 300 20 4000 >1000 6000	proposed proposed proposed proposed proposed proposed proposed
CLEAN HALO SNO+ MOON NOVA OMNIS LANNDD MEMPHYS	Ne, Ar Pb Scintillator I ⁰⁰ Mo Scintillator Pb LAr Vater	0.01 0.1 1 0.03 20 2-3 70 440	Canada, USA? Canada Canada ? USA USA? USA? Europe	30 40 300 20 4000 >1000 \$000	proposed proposed proposed proposed proposed proposed proposed proposed
CLEAN HALO SNO+ MOON ONOVA OMNIS LANNDD MEMPHYS	Ne, Ar Pb Scintillator Contillator Scintillator Pb LAr Quater	0.01 0.1 1 0.03 20 2-3 70 440 500	Canada, USA? Canada Canada ? USA USA? USA? Europe USA	30 40 300 20 4000 >1000 >100,000 >100,000	proposed proposed proposed proposed proposed proposed proposed proposed proposed
CLEAN HALO SNO+ MOON ONNIS CANNDD LANNDD MEMPHYS UNO	Ne, Ar Pb Scintillator I ⁰⁰ Mo Scintillator Pb LAr UAter Water Water	0.01 0.1 1 0.03 20 2-3 70 440 500 500	Canada, USA? Canada Canada ? USA? USA? USA? Europe USA Japan	30 40 300 20 4000 >1000 >100,000 >100,000	proposed proposed proposed proposed proposed proposed proposed proposed proposed proposed
CLEAN HALO SNO+ MOON ONNIS CANNDD LANNDD MEMPHYS GUNO LENA	Ne, Ar Pb Scintillator Confillator Scintillator Pb LAr Dater Water Water Scintillator	0.01 0.1 1 0.03 20 2-3 70 440 500 500 60	Canada, USA? Canada Canada ? USA? USA? USA? Europe USA Japan Europe	30 40 300 20 4000 >1000 >100,000 >100,000 18,000	proposed proposed proposed proposed proposed proposed proposed proposed proposed proposed proposed proposed

Most urgently needed supernova neutrino CC and NC cross-section measurements: (total and differential)

oxygen, argon, lead, iron, (carbon) So, how can we address these needs?

NN

NuSNS (Neutrinos at the SNS)

A neutrino facility with capability to measure multiple targets

NuSNS collaboration: 20 US institutions

System	Lead		
Project manager	Efremenko (Tenn)		
Bunker	Cianciolo (ORNL)		
Segmented Detector	Hungerford (Houston)		
Homogeneous Detector	Stancu (Alabama)		
vA Scattering	Scholberg (Duke)		
Veto	Greife (Mines)		
SNS & Backgrounds	Blackmon (ORNL)		
Theory	McLaughlin (NCSU)		
пеогу	Hix (ORNL)		

http://www.phy.ornl.gov/nusns

Spot identified 20 m from the target

Conventional ~10 ton detectors w/ few MeV thresholds: -liquid target + PMTs -strawtube gas tracker+ target sheets { targets -cosmic ray veto

Concrete + steel bunker, 1 m ceiling, 0.5 m walls; inner 4.5x4.5x6.5 m³ volume

Aims to be 'user facility'

The Homogeneous Detector: liquid targets

3.5m x 3.5m x 3.5m steel vessel (43 m³, 15.5 m³ fiducial volume) 600 8'' PMTs

(41% coverage)

Well known technology!

Potential targets

- 1300 events/yr
- 450 events/yr
- 1000 events/yr $v_x + {}^2H \rightarrow p + n + v_x$ (heavy water)

 $v_{e}^{+12}C \rightarrow 1^{12}N + e^{-}$ (mineral oil)

 ν_{a} +¹⁶O \rightarrow ¹⁶F+e⁻ (water)

The Segmented Detector: metallic targets

- Thin corrugated metal sheet (e.g. 0.75 mm-thick iron) Total mass ~14 tons, 10 tons fiducial
- Detector: 1.4x10⁴ gas proportional counters (straw tube),
- 3m long x 16mm diameter

- 3D position by cell ID & charge division
- PID and energy by track reconstruction

Potential targets

- 1100 events/yr
- 1100 events/yr
- 4900 events/yr

- ν_e +Fe \rightarrow Co+e⁻
- ν_e +Al \rightarrow Si+e⁻
- $v_e + Pb \rightarrow Bi + e^-$

Geant4 simulation & prototype studies underway for all subdetectors

Another physics topic requiring a different detector technology:

Coherent neutral current neutrino-nucleus elastic scattering

 $\nu + A \rightarrow \nu + A$ A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils

- Neutral current, so flavor-blind
- Coherent up to $E_v \sim 50 \text{ MeV}$
- Important in SN processes & detection

This process has a cross-section easily calculable in the Standard Model:

A. Drukier & L. Stodolsky, PRD 30, 2295 (1984) Horowitz et al. astro-ph/0302071

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

And the cross-section is *large*!

${\sim}100$ times inverse β dk in few-50 MeV range

Never before observed: huge rates but recoil energies are tiny!

Detector technologies that might work: (WIMPs) Noble gas/liquid, single or dual-phase (Ne, Ar, Xe)

- 10 keV threshold achievable, good recoil selection
- large target masses may be possible
- bg requirements less stringent than for WIMPs

Integrated yield for various targets vs threshold

So, the 'sanitized' rates look good... even with a few kg scale detector, one might make the first detection

What physics could be learned?

K. Scholberg, Phys. Rev D 73 (2006) 033005

Basically, any deviation from SM x-scn is interesting...

- Weak mixing angle:

could measure to ~5%

 Non Standard Interactions (NSI) of neutrinos: could significantly improve constraints
 Neutrino magnetic moment: hard, but maybe doable

Example: sensitivity to NSI parameters

With ~100 kg-yr, can significantly improve constraints on ε_{ee} and $\varepsilon_{e\tau}$ NSI parameters So, for all these physics topics, detectors are feasible, interaction rates good; we still need to fully understand background: n's, e's, γ 's, instrumental...

Radioactivity (detector & ambient)
Cosmic ray related

- reduced by veto & bunker

- Beam-related neutrons

subject to pulsed beam rejection factor (10⁻⁴-10⁻³)

Background neutron simulations by SNS neutronics group

For coherent NC scattering: need neutron flux in few MeV range, both energy & time dependence

Background measurements 2006

2 stacks of shield block 4 detector stations: 52"x 52" x 60" high

5" liquid scintillator

Measurements will continue as beam power ramps up

Summary

The SNS at ORNL will provide a high-intensity stopped-pion neutrinos in the fews tens of MeV range

This is ideal for studies of supernova-relevant neutrino-nucleus interactions!

The Nu-SNS collaboration plans homogeneous and segmented detectors 20 m from the target: O, C, d, Pb, Fe

Also: coherent NC elastic scattering in low threshold detector may be possible

Background and prototype studies underway at the SNS