Single Pion Measurement Capabilities at SciBooNE

Yasuhiro Nakajima, Kyoto University NuInt07 June 1, 2007

Outline

- SciBooNE experiment
- Motivations to $CCI\pi^+$ measurement
- $CCI\pi^+$ measurement capability at SciBooNE
- Summary

SciBooNE overview

Single pion production is one of very important topics. June 1st, 2007 Nulnt07 Y. Nakajima

Ev (GeV)

SciBooNE

Motivations for single pion measurement (1)

- v_{μ} disappearance $(v_{\mu} \rightarrow v_{x})$ experiment: T2K, MiniBooNE (Cherenkov detectors)
 - Signal: CCQE (~40% of total int.). Neutrino energy can be reconstructed by muon kinematics.
 - Background: CC-Iπ⁺ (~20% of total int.). Since pions and protons are low momentum, <u>they are</u> <u>below Cherenkov threshold.</u>

Precise knowledge of cross-section is required to understand the backgrounds.

 $\begin{array}{c} \mathcal{CCI}\pi^{+} \\ \nu_{\mu} & \mu^{-} \\ & W^{+} & \pi^{+} \\ p,n & \Delta^{(+)+} & p,n \\ a \text{ few I00 MeV/c,} \\ can be absorbed in nuclei. \end{array}$

CCQE

W+

Vµ

n

Y. Nakajima

June 1st, 2007 Nulnt07

 \mathfrak{u}^{-}

Previous cross-section

measurement

- Most of data comes from old bubble-chamber experiments.
- poor statistics
- K2K and MiniBooNE are making great measurements.
- SciBooNE will follow with:
 - higher statistics than K2K
 - higher resolution than MiniBooNE.

Single Pion Measurement at SciBooNE

Y. Nakajima

CC-Iπ⁺ final state tagging

MC: $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$

MC: $\nu_{\mu}n \rightarrow \mu n\pi^+$

- Clear event-by-event final state tagging!
- Able to separate $v_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ from $v_{\mu}n \rightarrow \mu^{-}n\pi^{+}$

Y. Nakajima

Sensitivity to Pion absorption in nuclei $MC: V_{\mu P} \rightarrow \mu^{-} p_{\mu^{-}}$ Absorbed in nuclei

- We can distinguish Pion absorption events from CCQE by checking p-µ kinematics.
- Capability of measuring effect of pion absorption in nuclei.

Sensitivity

- Expect ~28000 resonant CC-Iπ⁺ interactions in SciBar fiducial volume (10t) (for 1.0 x 10²⁰ P.O.T.)
- We will have sufficient statistics/systematics to measure CC-Iπ⁺/CCQE cross-section ratio with 5 % precision

pπ separation with dE/dx

Summary

- SciBooNE is aiming to make precision crosssection measurements below ~I GeV region.
 - Helps MiniBooNE, T2K
- For CCIπ⁺ measurement, all muons, pions, and protons can be reconstructed as tracks.
 - Clear separation of interaction type.
 - Sensitivity to pion absorption in nuclei.

We've just started!

- We've just finished detector installation, and started beam commissioning!
- Exciting new data is coming soon!

June 1st, 2007 Nulnt07

SciBooNE

Backup slides

Geometrical acceptance for CC events

- Require µ stopped inside the detectors.
- ~60 % total geometrical acceptance for CC interaction.

Event selection criteria for CC-1 π^+ (ν +N \rightarrow μ^- +N+ π^+)		• 2 tracks from the common vertex • Both tracks are MIP-like (μ & π)		
Neutrino run (0.5x10 ²⁰ POT)				
Selection criteria	# of events	# of CC-1π ⁺ events	Purity	Efficiency
Generated in FV	73,219	13,892		100%
CC inclusive sample (SciBar+EC+MRD)	37,174	8,977	24.1%	64.6%
# of tracks =2	8,291	2,705	32.6%	19.5%
1 st track PID =µ-like	7,845	2,580	32.9%	18.6%
2 nd track PID =µ-like	2,898	1,355	46.8%	9.8%

Y. Nakajima