Modeling the Transition Region

from High to Low Q^2

Sergey Alekhin

Sergey Kulagin

INR Moscow

<u>Roberto Petti</u> University of South Carolina, USA

Fermilab, May 30 - June 3, 2007 NuInt 07: 5th Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region

I Introduction

- Modeling the transition region from Deep Inelastic Scattering (DIS)
- High Twists in structure functions
- Overview of phenomenological observations
- II Analysis of charged lepton scattering
- Determination of dynamical High Twist terms
- Structure function limit to $Q^2 \rightarrow 0$
- Extrapolation to resonance region
- ✤ Comparison with low Q data
- III Neutrino (antineutrino) scattering

 - ✤ Comparison with low Q data

MODELING THE TRANSITION REGION

• The large momentum transfer (Q) regime is well understood in terms of QCD parton model. Predictions have been verified with a variety of probes $(e, \mu, \nu, \overline{\nu})$ and targets

 \implies Universality of partonic description.

- By lowering progressively Q nonperturbative phenomena become more and more important for structure functions (SF):
 - What is the limit of applicability of perturbative calculation?
 - What is the magnitude of nonperturbative effects?
 - Typical scales relevant for different contributions?
- Autural to extrapolate DIS calculations to lower Q values or to the resonance region assuming a smooth transition. The range of validity of such approach would depend on different issues:
 - High Twists
 - Transition from dynamics to the regime dominated by current conservation
 - Axial and vector currents
 - Target description (e.g. nuclear effects)

HIGH TWISTS IN STRUCTURE FUNCTIONS

• The Operator Product Expansion (OPE) allows to express unpolarized SFs in terms of powers of $1/Q^2$, with coefficients related to local operators of a given "twist" τ :

$$F_{T,2,3}(x,Q^2) = F_{T,2,3}^{\tau 2}(x,Q^2) + \frac{H_{T,2,3}^{\tau 4}}{Q^2} + \frac{H_{T,2,3}^{\tau 6}}{Q^4} + \dots$$

- The Leading Twist (LT) term $\tau = 2$ in the series corresponds to free quark scattering and is responsible for the scaling of structure functions via perturbative QCD $\alpha_s(Q^2)$ corrections. It dominates for $Q^2 \gtrsim 10$ GeV².
- The Higher Twist (HT) terms $\tau = 4, 6, ...$ reflect the strength of the multi-parton correlations (qq and qg). They are suppressed by powers of $1/Q^2$ (power corrections):
 - Twist-4 important for $Q^2 \lesssim 10 \text{ GeV}^2$
 - Twist-6 relevant only for $Q^2 \lesssim 3 \text{ GeV}^2$

• The kinematical High Twists associated with the finite mass of the target nucleon are mostly relevant at large $x^2 M^2/Q^2$ values. The corresponding corrections involving powers of $1/Q^2$ are usually incorporated into the leading twist term ($\tau = 2$) following the prescription by Georgi and Politzer (1976):

 $F_{T,2,3}^{\text{LT}}(x,Q^2) \to F_{T,2,3}^{\text{LT,TMC}}(x,Q^2)$

where the calculation involves the Nachtman variable $\xi = 2x/(1 + \sqrt{1 + 4M^2x^2/Q^2})$. Well established procedure (Kretzer and Reno 2004), but difficulty for $x \to 1$ due to wrong threshold behaviour ($F_i^{\text{LT}}(\xi, Q^2) > 0$).

 \implies See talk by Wally Melnitchouk at this workshop.

◆ The dynamical High Twists (τ > 2) related to multi-parton correlations can be determined phenomenologically from data by exploiting their specific Q² dependence which allows a separation from the LT term. Due to their nonperturbative nature, models (e.g. renormalons) provides only a qualitative description for such contributions.

OVERVIEW OF PHENOMENOLOGICAL OBSERVATIONS

• Miramontes, Miramontes and Sanchez (1989) analyzed world data on the ratio $R = \sigma_L / \sigma_T$ by introducing explicit high twist terms in F_L

- Parameterization of twist-4 in F_L as: $F_L^{\tau 4}(x,Q^2) = \frac{8k^2}{O^2}F_2^{\text{LO}}$
- ♦ They concluded the excess of SLAC data on R was evidence for the presence of substantial high twist contributions and obtained $k^2 = 0.05^{+0.02}_{-0.03}$ at 99% CL

- Whitlow et al. (1990) re-analyzed SLAC data and parameterized $R = \sigma_L / \sigma_T$ from SLAC,EMC,BCDMS and CDHSW
- Phenomenological fit to R data with: $R^{\text{fit}} = \frac{b_1}{\ln(Q^2/\Lambda^2)} \Theta(x, Q^2) + \frac{b_2}{Q^2} + \frac{b_3}{Q^4 + 0.3^2}$ where $\Theta(x, Q^2) = 1 + 12 \frac{Q^2}{Q^2 + 1} \frac{0.125^2}{0.125^2 + x^2}$
- They concluded $R(x,Q^2)$ is higher than QCD predictions including TMC and their phenomenological function contained HT-like terms in $1/Q^2$ and $1/Q^4$

- Virchaux and Milsztajn (1992) extracted high twists in F₂ from a NLO fit to SLAC and BCDMS data.
- F_2 parameterization in factorized form: $F_2(x, Q^2) = F_2^{\text{LT,TMC}}(x, Q^2) \left(1 + \frac{C_{\text{HT}}(x)}{Q^2}\right)$
- The inclusion of an additional term as D_{HT}(x)/Q⁴ provided only a marginal improvement in the fit and therefore it was discarded

- Kataev, Parente and Sidorov (1999) extracted HT in xF₃ from fits to CCFR ν data at different orders in pQCD.
- xF_3 parameterization in additive form: $xF_3(x,Q^2) = xF_3^{\text{LT,TMC}}(x,Q^2) + \frac{h(x)}{Q^2}$
- Although statistically limited, the analysis found a reduction of twist-4 terms by increasing the order of pQCD calculation from LO to N³LO. Similar results obtained for F₂ and R from NLO to NNLO by Yang and Bodek (2000).

- * Alekhin (2002) extracted high twists in F_2 and F_L from fits to DIS data to SLAC, BCDMS, NMC, HERA with $Q^2 > 2.5 \text{ GeV}^2$ at different pQCD orders.
- SF parameterization in additive form: $F_{2,L}(x,Q^2) = F_{2,L}^{\text{LT,TMC}}(x,Q^2) + \frac{H(x)_{2,L}}{Q^2}$
- Only marginal reduction of twist-4 terms was observed by increasing the order of pQCD calculation from NLO to NNLO
- Significant high twist contribution to F_L observed for x < 0.3 in agreement with Miramontes et al.

- Niculescu et al. (2000) verified local quark-hadron duality at JLab
- Analysis of integrated strength:

 $I(Res/DIS) = \frac{\int_{\xi(W_2^2)}^{\xi(W_2^2)} F_2^{\text{data}}(\xi, Q_0^2) d\xi}{\int_{\xi(a)}^{\xi(b)} F_2^{\text{scaling}}(\xi, Q^2 = 10) d\xi}$

where $\xi = 2x/(1 + \sqrt{1 + 4M^2x^2/Q^2})$ and $\xi(a, b)$ corresponds to $\xi(W_1^2, W_2^2)$

- ♦ Results indicated a suppression of additional high twists in resonance region with respect to the average DIS behaviour, down to $Q^2 ~ 1$ GeV².
- ♦ Duality observed for local resonances as well as for the 1 ≤ W² ≤ 4 GeV² range

Cornwall–Norton Moments

- Study of duality from structure function moments (Christy et al. 2005) at JLab
- The moments are defined as:

$$M_n^k(Q^2) = \int_0^1 dx \ x^{n-2} F_k(x, Q^2)$$

where
$$k = 1, 2, L$$

 High twist contributions visible from Q² dependence of moments beyond pQCD logarithmic scaling violations:

$$M_n(Q^2) = A_n^{\tau 2} + \frac{A_n^{\tau 4}}{Q^2} + \frac{A_n^{\tau 6}}{Q^4} + \dots$$

• The Q^2 behaviour of M_2 in the resonance region indicates F_2 and F_1 are well described by pQCD down to $Q^2 \sim 1 \text{ GeV}^2$.

- Extraction of moments for F₂^p in the resonance region by the CLAS collaboration at JLab (Osipenko et al. 2003)
- ◆ The leading twist dominates down to 2Q²/n ~ 1 GeV². The size of total high twist is comparable with that obtained from DIS and grows with x.
- The small HT contribution resulted from a cancellation between twist-4 and twist-6 terms, whose magnitude can even exceed the one of the leading twist (OPE convergence?). Liuti et al (2001) also observed the lower W region requires a negative 1/Q⁴ term.

- There is a significant contribution to F_L from dynamical high twists. Most notably power corrections of the order of $1/Q^4$ may be needed to explain existing data on the ratio $R = \sigma_L/\sigma_T$
- To some extent dynamical high twists absorb missing orders in perturbation theory. Their size is therefore reduced by extending the order of pQCD calculation, becoming very small at NNLO.
- High twists affect only the region of $Q^2 \sim 1 \div 3$ GeV² and they are not important for the determination of leading twist
- The quark-hadron duality implies a suppression of dynamical high twists in the resonance region.

DETERMINATION OF DYNAMICAL HIGH TWISTS

- ◆ Perform global fit to the charged lepton DIS and Drell-Yan data samples with $Q^2 > 1.0 \text{ GeV}^2$ and W > 1.8 GeV is used. The leading twist is calculated in the NNLO approximation, with parton distributions evolved from $Q_0^2 = 9 \text{ GeV}^2$.
- The dynamical twist-4,6 terms, $H_{2,T}^{\tau 4,\tau 6}(x)$, are parameterized in a model-independent way by cubic splines with values at x = 0.1, 0.3, 0.5, 0.7, 0.9 which are fitted from data.
- Few external constraints are imposed:
 - $H_{2,T}^{\tau 4,\tau 6}(0) = 0$ since no clear evidence for saturation effects is found at HERA;
 - $\frac{H_{2,T}^{\tau 6} = 0 \text{ at } x > 0.5}{\text{them out of the resonance region.}}$

- The high twist terms in F_2 demonstrate good convergence: $H_2^{\tau 6}$ is much smaller than $H_2^{\tau 4}$ and it is comparable to zero within the errors.
- For F_T the picture is different: the magnitudes of $H_T^{\tau 6}$ and $H_T^{\tau 4}$ terms are comparable and somehow compensate each other. Poor convergence of the OPE?

The total high twist contribution to F_T indicates a weak dependence on Q^2 for x < 0.3

The twist-6 terms in F_T arise due to a mismatch between SLAC and BCDMS data at $Q^2 = 5 \div 10$ GeV² but different y

Figure 5.14/continued: Comparison of SLAC and BCDMS hydrogen F_2 results.

Whitlow et al. 90

Electro-weak corrections seem not responsible for the SLAC/BCDMS discrepancy

The $\mathcal{O}(\alpha_s^3)$ corrections (solid curves) to the DIS coefficient functions (Moch, Vermaseren, Vogt 04-05) do not change the fitted twist-6 terms

Preliminary data from JLab E-118 are in agreement with the low-Q part of SLAC data

NEW RESULTS ON HIGH TWISTS

- Many indications twist-6 terms extracted from data are fake. Perform new fits with H⁷⁶_{2,T} = 0 in the full kinematic region.
- ♦ After dropping twist-6 terms the shape and magnitude of twist-4 contributions to F₂ and F_T are comparable
- ♦ The upper limit on the magnitude of twist-6 terms turns out to be ~ 0.02 GeV², well below twist-4 terms.
- ♦ Out of the resonance region the high twist contributions correspond to ≤ 10% of the total structure functions, indicating a convergence of the OPE expansion.

EVALUATION OF $R = \sigma_L / \sigma_T$

• The excess in SLAC data for $R = \sigma_L/\sigma_T$ at $x \sim 0.2$ with respect to the QCD predictions was considered as evidence of the large high twist contribution to R and F_L (Miramontes 92)

Our results show instead such excess is connected with the discrepancy between SLAC and BCDMS and can be hardly attributed to the high twist contributions

STRUCTURE FUNCTIONS DOWN TO $Q^2 = 0$

LOW Q SF are constructed as smooth interpolation between QCD approach (LT + HT) at high Q^2 and the limit for $Q^2 \rightarrow 0$ from current conservation arguments:

- QCD matching point $Q_{\text{match}}^2 = 1.0 \text{ GeV}^2$
- Conservation of Electromagnetic Current implies $F_2 \sim Q^2$ and $F_L \sim Q^4$ as $Q^2 \rightarrow 0$.
- A cubic spline interpolation at fixed x is applied from $Q^2 = 1.0 \text{ GeV}^2$ to the $Q^2 = 0$ limit predicted by current conservation.
- Functions and derivatives match at $Q^2_{\rm match}$
- The region $0 \le Q^2 \le 1$ GeV² is determined by the asymptotics at $Q^2 \to 0$ and by the matching conditions at $Q^2 = Q^2_{\text{match}}$.

• Data points with $Q^2 < 1.0 \text{ GeV}^2$ (JLab, SLAC) are not included in fits

• The phenomenological extrapolation of the QCD phenomenology (LT + HT) provides a good description of charged lepton data down to $Q^2 \sim 0.5 \text{ GeV}^2$

IMPACT OF HIGH TWISTS

• The total High Twist contribution is a small correction to SFs at $Q^2 \gtrsim 1$ GeV²

The extrapolation of phenomenological HTs provides a sizeable correction in the resonance region (W < 1.9 GeV)</p>

EXTRAPOLATION TO RESONANCE REGION

- Use data on p and D targets within the region W > 1.9 GeV in fits.
- Extrapolation of DIS calculations to the resonance region with W < 1.9 GeV (not used in fits) is consistent with Bloom-Gilman duality at percent level.
- Indirect indication the Twist-6 contributions are small at large x values.

APPLICATION TO NEUTRINO SCATTERING

$$F_L = \frac{f_\pi^2 \sigma_\pi}{\pi} (1 + Q^2 / M_{\text{PCAC}}^2)^{-2} + \widetilde{F}_L \quad with \quad \widetilde{F}_L \propto Q^4 \quad for \quad Q^2 \to 0$$

 \implies Non vanishing contribution to $F_2 = (F_L + F_T)/(1 + 4x^2M^2/Q^2)$ for $Q \rightarrow 0$.

Roberto Petti

USC

- Predictions for the asymptotic value $F_2(Q^2 = 0)$ in neutrino CC scattering seem in agreement with the CCFR determination on Fe target 0.210 ± 0.02 .
- The finite PCAC contribution to F_L strongly affects the asymptotic behaviour of $R = \sigma_L / \sigma_T$ for $Q^2 \to 0$:

$$F_T \sim Q^2$$

$$F_L \sim \frac{f_\pi^2 \sigma_\pi}{\pi} > 0$$

so that R is divergent for vanishing Q^2

⇒ Substantial difference with respect to charged lepton scattering.

HIGH TWISTS IN NEUTRINO SCATTERING

- Independent determination of the twist-4 terms from v(v) cross-section data:
 - Global fit with charged lepton DIS and DY;
 - Nuclear corrections by Kulagin-Petti;
 - Electro-weak corrections by Arbuzov-Bardin.
- Discrepancies between CHORUS (blue curves) and NuTeV (green curves) do not allow unambiguous results
- Possible best strategy in global fits with charged lepton DIS and DY data:
 - Define H^{τ4}_{2,T} for (anti)neutrinos as the one for charged leptons, rescaled according to the ratio of the corresponding leading twist terms;
 - Extract $H_3^{\tau 4}$ from (anti)neutrino data.

COMPARISON WITH LOW Q DATA

Low x (< 0.05) CHORUS data on Pb target (PLB 632 (2006) 65.) reach $Q^2 \sim 0.25$ GeV² and can be used for tests of PCAC contribution (suggest $M_{\rm PCAC} \sim 0.8$ GeV)

SUMMARY

- A detailed analysis of dynamical High Twists from world data on charged lepton DIS has been performed. Results provide new insights on High Twist contributions to SFs:
 - Part of the excess observed in SLAC data on $R = \sigma_L/\sigma_T$ with respect to pQCD predictions is related to the tension with BCDMS data. <u>No evidence for actual twist-6 terms</u>.
 - The magnitudes of twist-4 terms in F_2 and F_T are comparable and they do not vanish in the NNLO approximation for the leading twist.
 - Dynamical Twist-4 terms contribute to structure functions at $Q^2 \lesssim 10$ GeV² and are crucial for a precise modeling of the transition region.
 - Convergence of the OPE expansion has been verified with the extracted HT down to 1 GeV².
- ◆ A smooth interpolation between QCD phenomenology (Leading Twist + Twist-4) at large Q^2 and limits for $Q^2 \rightarrow 0$ from current conservation arguments has been used to parameterize low Q^2 structure functions.

 \implies Good description of data from charged lepton DIS down to $Q^2 \sim 0.5$ GeV².

 Once the effect of the axial-vector current is taken into account, (anti)neutrino charged-current data are, in general, consistent with charged lepton scattering data. Some discrepancies among different experiments