The Strange-Antistrange Asymmetry
The NuTeV Measurement & a Peek at Future Prospects...

David A. Mason
Fermilab
Talking about a slightly different energy regime...
NuTeV

• ν-N DIS ($\langle E_\nu \rangle \sim 120 GeV$)
• FNAL ’96-’97 fixed target run
• 3.15×10^{18} protons on target
 – 886,004 ν, 255,045 $\bar{\nu}$ CC events
 – 5163 ν and 1380 $\bar{\nu}$ Dimuons
• Detector calibration beam throughout run
 – hadron, e, and muon beams
• High purity, selectable ν and $\bar{\nu}$ beams
The NuTeV Collaboration:

T. Adams4, A. Alton4, S. Avvakumov8, L. de Barbaro5, P. de Barbaro8, R. H. Bernstein3, A. Bodek6, T. Bolton4, J. Brau6, D. Buchholz5, H. Budd8, L. Bugel3, J. Conrad2, R. B. Drucker6, B. T. Fleming2, R. Frey6, J. A. Formaggio2, J. Goldman4, M. Goncharov4, D. A. Harris8, R. A. Johnson1, J. H. Kim2, S. Koutsoliotas2, M. J. Lamm3, W. Marsh3, D. Mason6, J. McDonald7, K. S. McFarland8,3, C. McNulty2, D. Naples7, P. Nienaber3, V. Radescu7, A. Rosoman2, W. K. Sakumoto8, H. Schellmann5, M. H. Shaevitz2, P. Spentzouris2, E. G. Stern2, N. Suwonjandee1, M. Tzanov7, M. Vakili1, A. Vaitaitis2, U. K. Yang8, J. Yu3, G. P. Zeller5, and E. D. Zimmerman2

1University of Cincinnati, Cincinnati, OH
2Columbia University, New York, NY
3Fermi National Acelerator Laboratory, Batavia, IL
4Kansas State University, Manhattan, KS
5Northwestern University, Evanston, IL
6University of Oregon, Eugene, OR
7University of Pittsburgh, Pittsburgh, PA
8University of Rochester, Rochester, NY

David A. Mason
NuInt '07: June 3, 2007
$\sin^2 \theta_W$ and the Strange Asymmetry

- NuTeV measured $R^- = \frac{\sigma^{\nu}_{NC} - \sigma^{\mu}_{NC}}{\sigma^{\nu}_{CC} - \sigma^{\mu}_{CC}}$
- From that $\sin^2 \theta_W$ was extracted
 - Insensitive to sea quark uncertainties
 - But assumed $s(x) = \bar{s}(x)$
- 0.22773 ± 0.00135 (stat) ± 0.00093 (syst)
- 3 σ above world average
- R^- correction from asymmetric strange sea is proportional to $S^- \equiv \int x[s(x) - \bar{s}(x)]dx$
- Led to much theoretical speculation \Rightarrow
- $S^- \sim 0.0068$ required to bring to world ave.
The Strange Uncertainty

- Not well constrained in global fits (through structure function differences)
- Parameterizations (e.g. CTEQ, MRST...) typically assume $s = \bar{s} = 0.2(\bar{u} + \bar{d})$
- Uncert. in pdf sets represent $\bar{u} + \bar{d}$ error, not error on strange
- Freeing strange in CTEQ6 fit \Rightarrow
- Constraint from data is needed!
- (But must be in useful form for fits)

(F. Olness talk DIS 2005)
A Pantheon of Asymmetry Predictions

Cao & Signal \((x_s - \bar{x}_s)\)

Alwai et al \((x_s - \bar{x}_s)\)

Wakamatsu \((x_s - \bar{x}_s)\)

Catani et al \((s - \bar{s})\)

Brodsky & Ma \((s - \bar{s})\)

NuTeV can directly measure this!

David A. Mason
NuInt '07: June 3, 2007
Charm Production \Rightarrow Dimuons

- CC νN makes charm
- \rightarrow fragmentation
- \rightarrow semileptonic decay to μ
- Very clear signature
- Direct look at strange sea
- With sign selected beam NuTeV can look at $s(x)$, $\bar{s}(x)$ independently
- Can also measure charm mass
The Onion Representation of Dimuons

Physics convolved with experimental effects is what’s measured

Detector Smearing
Acceptance

\(E_{\mu 2} > 5 \text{ GeV} \)

Measured

\(\mu_2 \)
The Dimuon Cross Section

Dimuon Cross Section

Detector Smearing
Acceptance
$E_{\mu_2} > 5$ GeV

Data

Measured Independently
(CCFR Testbeam)

Measured Independently
(NuTeV Calibration Beam)
The Forward Dimuon Cross Section

- Measure Dimuon rather than charm cross section
- Eliminates model dependence from:
 - Semileptonic Decay
 - Fragmentation
 - Order in α_s of Cross Section
- Model dependence only from effects which cross “⊗” boundary
- Minimized in high acceptance events ($E_{\mu-\text{charm}} > 5$ GeV)
- With model dependence removed, can use simple (LO) model for extraction!

Forward Dimuon Cross Section: Cross section of dimuon events in iron such that the charm decay muon has energy > 5 GeV.

(Goncharov et al:PRD64 (2001) 112006)

David A. Mason
NuInt '07: June 3, 2007
Good LO Data/MC Agreement: Neutrinos

- Red points are data, black is MC, energies in GeV
Good LO Data/MC Agreement: Antineutrinos

- **Red** points are data, black is MC, energies in GeV

David A. Mason
NuInt '07: June 3, 2007
Forward Dimu Cross Section Table

- Plotting xsec vs x, normalized so $\frac{G_F^2 M_\pi}{\pi} = 1$
- Table is available in electronic form for global fits!
With the LO model having served its purpose
We now move to NLO:
NLO charm production

- 1st order in QCD
- NLO of global interest
- Substantial gluon pdf
- But fragmentation requires convolution integral
- Dimuon acceptance depends on z, charm p_{\perp}
Elements in Dimuon Cross Section Table Fit

\[\frac{d\sigma_{\text{charm}}(E_\nu, x, y; m_c, s, \bar{s})}{dxdy} \otimes \mathcal{N}(A, x, Q^2) \cdot B_c \cdot A_{\mu 2}(E_\nu, x, y; \epsilon, m_c) = \text{fit} \Rightarrow \frac{d\sigma_{\mu}(E_\nu, x, y)}{dxdy} \]

- Measured NuTeV dimuon cross section
- Calculated inclusive charm cross section. depends on \(m_c \), strange and antistrange seas.
- Nuclear corrections (iron target, proton pdfs) dependent on nucleus \(A \), \(x \), and \(Q^2 \), is convolved with pdf
- Semileptonic branching ratio.
- Acceptance function due to the 5 GeV cut on the muon from semileptonic charm decay \(\frac{\mathcal{N}(E_{\mu 2q} > 5\text{GeV})}{\mathcal{N}(\text{all})} \).

David A. Mason
NuInt '07: June 3, 2007
Nuclear Corrections: $N(A, x, Q^2)$

- Proton based global fit pdf’s require nuclear corrections (iron target)
- N depends on nucleus type, x, and Q^2
 - And whether valence, sea quarks or gluons involved
- Past analyses have used simple Q^2 independent parameterization
- First time N from global fits have been used
- de Florian et al, NLO corrections \Rightarrow
Semi-muonic Branching Ratio: B_c

- B_c is an average semi-μ branching ratio over all charm states
- Fitting to cross section table requires taking from external measurements
- 2004 PDG value of 0.099 ± 0.012 used
- B_c uncertainty \Rightarrow half of uncertainty in this strange asymmetry measurement
\(E_{\mu - \text{charm}} > 5 \text{ GeV} \) Acceptance \(\mathcal{A}_{\mu 2} \) –DISCO!

- Fitting table requires \(E_{\mu 2} > 5 \text{ GeV} \) acceptance correction
- \(2\mu \) acceptance depends on fragmentation
- Also depends on charm \(p_\perp \) at NLO
- \(\Rightarrow \) need cross section differential in both
- i.e. need:

\[
\frac{d\sigma_{\text{charm}}}{d\xi \, dy \, dz \, d\eta_c}
\]

where \(\eta_c = \frac{1}{2} \log \frac{E_c + p_{c\parallel}}{E_c - p_{c\parallel}} \)

(i.e. a true rapidity, not pseudorapidity)

Acceptance Tables

- Ratio of dimuons which pass $E_{\mu-\text{charm}} > 5$ GeV cut
- Acceptances calculated for each of 90 table points (1 shown) →
- In grid of 12 ϵ, 6 m_c points
 - m_c dependence is NLO effect from rapidity
- In each table bin, 20 $z \times 40 \eta_c$ bins
- Decay 20,000 dimuons in each
NLO fits table well!

- Plotting xsec vs x, normalized so $\frac{G_F^2 M_E}{\pi} = 1$
A Progression of Fits...

- Performed several fits, taking charm mass, nonstrange pdfs, branching ratio from external measurements:
 1. Treating strange/antistrange seas as modification of pre-evolved pdfs
 2. Defining s, \bar{s} pdfs at Q_0, evolving properly
 3. Using CTEQ parameterization, evolving properly, satisfying sum rules

- Also studied dependence of strange asymmetry on shape
Traditional fit first...

\[
s(x, Q^2) = \kappa (1-x)^\alpha \left[\frac{u(x, Q^2) + d(x, Q^2)}{2} \right]
\]

\[
\bar{s}(x, Q^2) = \bar{\kappa} (1-x)^{\bar{\alpha}} \left[\frac{\bar{u}(x, Q^2) + \bar{d}(x, Q^2)}{2} \right]
\]

- Factors applied to already evolved pdfs
- \(S^- = 0.0023 \pm 0.0006 \) (stat)
 \[
 S^- \equiv \int x \left[s(x) - \bar{s}(x) \right] dx
 \]
- But do we get this answer because of the approximate QCD evolution?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_c)</td>
<td>1.20 GeV (fixed)</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>0.60 (fixed)</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>0.596 \pm 0.028</td>
</tr>
<tr>
<td>(\bar{\kappa})</td>
<td>0.521 \pm 0.026</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1.34 \pm 0.49</td>
</tr>
<tr>
<td>(\bar{\alpha})</td>
<td>1.54 \pm 0.46</td>
</tr>
<tr>
<td>(B_c)</td>
<td>0.099 (fixed)</td>
</tr>
</tbody>
</table>

David A. Mason
NuInt '07: June 3, 2007
To evolve properly...

\[
\mu^2 \frac{d}{d\mu^2} \phi_{i,h}(x, \mu^2) = \sum_{j=q,\bar{q},G} \int_x^1 \frac{d\xi}{\xi} \ P_{ij} \left(\frac{x}{\xi}, \alpha_s(\mu^2) \right) \phi_{j,h}(\xi, \mu^2)
\]

- pdf must be solution of DGLAP equation (above)
- Define at an initial scale (\(\mu_0 = Q_0\)) then numerically solve to find pdf \(\phi_{j,h}(\xi, \mu^2)\), at arbitrary scale, \(\mu\).
- Some freedom in pdf definitions is required (\(s \neq \bar{s}\))
- Use modified version of EVLCTEQ evolution code which allows \(s \neq \bar{s}\) (thanks to Wu-Ki Tung)
- Use LHApdf v1.2 package as a wrapper
- CTEQ6M pdfs, defining \(s, \bar{s}\) at \(Q_0 = 1.3\) GeV
Redo $\kappa - \alpha$ fit, evolving properly:

<table>
<thead>
<tr>
<th>Description</th>
<th>κ</th>
<th>κ'</th>
<th>α</th>
<th>α'</th>
<th>δ^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central value</td>
<td>0.415</td>
<td>0.332</td>
<td>0.87</td>
<td>1.09</td>
<td>0.00195</td>
</tr>
<tr>
<td>Statistical error</td>
<td>0.031</td>
<td>0.030</td>
<td>0.68</td>
<td>0.71</td>
<td>0.00055</td>
</tr>
<tr>
<td>$\nu \pi$-K (15%)</td>
<td>0.012</td>
<td>0.009</td>
<td>0.38</td>
<td>0.08</td>
<td>0.00041</td>
</tr>
<tr>
<td>$\bar{\nu}$ π-K (21%)</td>
<td>0.006</td>
<td>0.018</td>
<td>0.05</td>
<td>0.14</td>
<td>0.00031</td>
</tr>
<tr>
<td>Emuff scale (1%)</td>
<td>0.007</td>
<td>0.016</td>
<td>0.19</td>
<td>0.01</td>
<td>0.00002</td>
</tr>
<tr>
<td>Had energy scale (0.5%)</td>
<td>0.008</td>
<td>0.009</td>
<td>0.15</td>
<td>0.04</td>
<td>0.00010</td>
</tr>
<tr>
<td>R_L (20%)</td>
<td>0.011</td>
<td>0.018</td>
<td>0.06</td>
<td>0.02</td>
<td>0.00005</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.014</td>
<td>0.021</td>
<td>0.16</td>
<td>0.06</td>
<td>0.00000</td>
</tr>
<tr>
<td>Emu2 rangeout</td>
<td>0.013</td>
<td>0.021</td>
<td>0.31</td>
<td>0.06</td>
<td>0.00012</td>
</tr>
<tr>
<td>Flux norm</td>
<td>0.002</td>
<td>0.006</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00000</td>
</tr>
<tr>
<td>Total Table Systematics</td>
<td>0.028</td>
<td>0.044</td>
<td>0.58</td>
<td>0.18</td>
<td>0.00054</td>
</tr>
<tr>
<td>Charm mass</td>
<td>0.015</td>
<td>0.011</td>
<td>0.07</td>
<td>0.14</td>
<td>0.00006</td>
</tr>
<tr>
<td>Fragmentation ϵ</td>
<td>0.009</td>
<td>0.009</td>
<td>0.25</td>
<td>0.06</td>
<td>0.00023</td>
</tr>
<tr>
<td>B_C</td>
<td>0.053</td>
<td>0.055</td>
<td>1.32</td>
<td>0.19</td>
<td>0.00125</td>
</tr>
<tr>
<td>Total External Measurement</td>
<td>0.056</td>
<td>0.057</td>
<td>1.35</td>
<td>0.24</td>
<td>0.00127</td>
</tr>
<tr>
<td>Total Systematics</td>
<td>0.063</td>
<td>0.072</td>
<td>1.47</td>
<td>0.30</td>
<td>0.00138</td>
</tr>
</tbody>
</table>
\[\kappa - \alpha \times s^{-}(x) \text{ vs } x \]

- \(\chi^2 = 36.9 \) out of 39.8 DoF
- \(xs^{-}(x) \text{ vs } x \), inner band stat. error, outer band total \(\implies \)
- Asymmetry agrees well with approximate evolution fit
- But \(\int_{0}^{1} [s(x) - \bar{s}(x)]dx \) isn’t zero.
- Technically should also satisfy sum rules.
Further Satisfying QCD requirements

- Stepped up collaboration with phenomenologists
 (Amundson, Kretzer, Olness, Soper, Tung)

- Using a “CTEQ inspired” parameterization (hep-ph/0312323)

\[
s^+(x, Q_0) = \kappa^+(1 - x)^{\alpha^+} x^{\gamma^+} \left[u(x, Q_0) + d(x, Q_0) \right]
\]

\[
s^-(x, Q_0) = s^+(x) \tanh \left[\kappa^- (1 - x)^{\alpha^-} x^{\gamma^-} \left(1 - \frac{x}{x_0} \right) \right]
\]

\[
s = \frac{s^+ + s^-}{2} \quad \bar{s} = \frac{s^+ - s^-}{2}
\]

- Flavor sum rule satisfied by \(x_0 \) such that \(\int s^-(x, Q_0) dx = 0 \)

- Total momentum sum rule satisfied by rescaling gluon to balance any change in \(\int x s^+ \) (thanks to Dave Soper)
 - Gluon sea is large, uncertainty is also large
 - Strange sea is small
 - \(\Rightarrow \) gluon uncertainty can handle small perturbation (< 1%)
s^+, s^- fit results:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_c</td>
<td>1.20 GeV (fixed)</td>
</tr>
<tr>
<td>ϵ</td>
<td>0.60 (fixed)</td>
</tr>
<tr>
<td>κ^+</td>
<td>0.551 ± 0.126</td>
</tr>
<tr>
<td>κ^-</td>
<td>$(-0.881 \pm 0.567) \times 10^{-2}$</td>
</tr>
<tr>
<td>α^+</td>
<td>1.11 ± 0.69</td>
</tr>
<tr>
<td>α^-</td>
<td>6.31 ± 4.06</td>
</tr>
<tr>
<td>γ^+</td>
<td>0.072 ± 0.064</td>
</tr>
<tr>
<td>γ^-</td>
<td>-0.102 ± 0.080</td>
</tr>
<tr>
<td>B_c</td>
<td>0.099 (fixed)</td>
</tr>
</tbody>
</table>

$$
\eta_s = \frac{\int_0^1 x s^+(x) dx}{\int_0^1 [\bar{u}(x)+\bar{d}(x)] dx}
$$

<table>
<thead>
<tr>
<th>η_s</th>
<th>s^-</th>
<th>Systematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0612</td>
<td>0.00196</td>
<td>central value</td>
</tr>
<tr>
<td>0.0011</td>
<td>0.00046</td>
<td>statistics</td>
</tr>
<tr>
<td>0.0026</td>
<td>0.00034</td>
<td>$\nu \pi$-K model</td>
</tr>
<tr>
<td>0.0019</td>
<td>0.00025</td>
<td>π-K model</td>
</tr>
<tr>
<td>0.0020</td>
<td>0.00004</td>
<td>μ spectrometer p scale (1%)</td>
</tr>
<tr>
<td>0.0014</td>
<td>0.00008</td>
<td>hadron energy scale (0.5%)</td>
</tr>
<tr>
<td>0.0018</td>
<td>0.00005</td>
<td>R_L in table model (20%)</td>
</tr>
<tr>
<td>0.0026</td>
<td>0.00001</td>
<td>table extraction MC statistics</td>
</tr>
<tr>
<td>0.0030</td>
<td>0.00012</td>
<td>μ_2 range out energy (2.5%)</td>
</tr>
<tr>
<td>0.0006</td>
<td>0.00005</td>
<td>ν, $\bar{\nu}$ relative normalization</td>
</tr>
<tr>
<td>0.0060</td>
<td>0.00045</td>
<td>total systematics</td>
</tr>
<tr>
<td>0.0022</td>
<td>0.00002</td>
<td>$\Delta m c = 0.10$</td>
</tr>
<tr>
<td>0.0020</td>
<td>0.00021</td>
<td>$\Delta\epsilon_{C-S} = 0.3$</td>
</tr>
<tr>
<td>0.0101</td>
<td>0.00111</td>
<td>$\Delta B_c = 0.012$</td>
</tr>
<tr>
<td>0.0068</td>
<td>0.00046</td>
<td>CTEQ6 PDF uncertainties</td>
</tr>
<tr>
<td>0.0007</td>
<td>0.00038</td>
<td>Nuclear corrections</td>
</tr>
<tr>
<td>0.0126</td>
<td>0.00128</td>
<td>total external measurement</td>
</tr>
</tbody>
</table>
$s^+, s^- \text{ asymmetry}$

- $\chi^2 = 38.2$ out of 37.8 DoF
- s^- prefers to satisfy sum rule by spiking negative at low x
- Crossing point at $x_0=0.004$
- Gluon sea only needs 0.07% change
- Asymmetry still consistent with previous two fits
A Reminder of the Pantheon of Asymmetries

Cao & Signal ($x s - x \bar{s}$)

Alwal et al ($x s - x \bar{s}$)

Wakamatsu ($x s - x \bar{s}$)

Catani et al ($s - \bar{s}$)

Brodsky & Ma ($s - \bar{s}$)

David A. Mason

NuInt '07: June 3, 2007
So we look at the asymmetry vs. crossing point...

\[s^- (x, Q_0) = s^+ (x) \tanh \left[\kappa^- (1 - x) \alpha^- x \gamma^- \left(1 - \frac{x}{x_0} \right) \right] \]
• We have measured the strange asymmetry to be positive
 – First complete NLO analysis for this process
 – Sign selected beam ensures pure $\nu, \bar{\nu}$ samples
 – Multiple fits, including proper evolution, QCD sum rules satisfied
 – Modern nuclear corrections
• Found asymmetry difficult to accommodate with x_0 at high x
• What might we expect experimentally beyond this measurement?
Other $\nu_s - \bar{s}$ measurements?

From CERN?

- **CHORUS & NOMAD:**
 - Ran in CERN SPS horn focused beam, mostly ν, some $\bar{\nu}$
 - $\nu_\mu \to \nu_\tau$ oscillation experiments \Rightarrow fine grained detectors.
 - Many charm measurements, dimuon results expected soon

- **Future – CNGS?**

![Diagram showing the layout of the CERN SPS and the proposed CNGS project.](image)
NuMI beam? MINOS?

- MINOS near detector has unprecedented ν CC event sample on tape
- \Rightarrow large dimuon sample
- Low energy would make hard to separate from backgrounds
- Would need pure $\bar{\nu}$ sample as well to measure $s - \bar{s}$
MINERνA?

- Fine grained detector with good particle ID
 - Strange particle tagging will be possible
 - Can NC strange particle production provide additional insight into $s(x)$?
 - MINERνA’s particle ID should allow charm production measurements beyond the “traditional” dimuon signature (ν energy permitting)
- To look at $s - \bar{s}$ would need ν and $\bar{\nu}$ data
Possibly further in the future: “CMF”

- An idea for the interim between Collider & ILC
- A ν DIS experiment to run in the “original” FNAL ν beamline
- 100x NuTeV statistics with a high energy sign selected beam
- Test beam calibrated CHARMII-like glass detector
- Primary goals include precision electroweak & SF measurements
- Statistics coupled with more precise B_c could really nail strange sea
In the meantime, here is what we know:

\[S_{NLO, CTEQ6}^- = +0.00196 \pm 0.00046 \pm 0.00045 \pm 0.00128 \]

\[m_c = 1.41 \pm 0.10 \pm 0.08 \pm 0.12 \text{ GeV/c}^2 \]