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Lecture I - Introduction to Deeply Inelastic Scattering

• Kinematics

• Cross sections and structure functions

• Lowest order results - parton model

• Parton distributions functions (PDFs)

• Examples, interpretations, and applications

Lecture II - Beyond the Parton Model

• Higher order corrections

• Factorization schemes

• PDF scale dependence and DGLAP evolution equations

• QCD-improved parton model

• Global Fits for PDFs



Lecture III - Life in the Real World: low Q2, nuclear effects and more

• Leading twist versus power suppressed corrections

• Higher Twist contributions

• Target Mass Corrections

• Heavy Quarks

• Nuclear Effects
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Brief Overview of DIS

A
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Charged lepton, neutral current DIS

• The basic idea is to use the known interaction of a photon to probe the
structure of the target particle

• Elastic lepton scattering from a point-like target particle can be calcu-
lated using QED

• If the target is an extended object the cross section is modified by one
or more form factors, e.g., one for a spinless target, two for a proton.

• These form factors depend on the squared four-momentum transfer Q2

• The Fourier transform of the electric form factor gives the spatial de-
pendence of the charge density
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• The generalization to inelastic scattering from a proton introduces two
“structure functions” (three if one is considering neutrino scattering)

• These structure functions depend on two kinematic variables - Q2 and
the energy transfer ν, for example.

• Early measurements at SLAC (1968) showed that for fixed values of
Q2/ν the structure functions showed no Q2 dependence - that is, they
only depended on one variable. This was called “scaling.”

• Feynman’s parton model (today’s lowest order QCD) provided an intu-
itive description of scaling

• Higher order QCD corrections provide an excellent description of the
observed deviations from exact scaling
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DIS

Charged current DIS

• Flavor changing weak interaction allows separation of different fla-
vor PDFs

• Parity violation introduces a third structure function

• Allows separation of q and q̄ PDFs

• Complementary probe of hadron structure
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• NuTeV structure functions versus Q2 at fixed values of x = Q2/2Mν

• Notice the near constant values for x ≈ 0.1− 0.3

• Structure functions increase with Q2 at low values of x and decrease at
high values of x

• Goal is to understand what these are, how they are extracted, and how
theory describes their behavior



• Could simply calculate the cross section in terms of the interaction
of the virtual boson with the partons in the target

• Historical approach has been based on structure functions

• The basic idea is to remove as much of the known physics of the
lepton vertex as possible, constrain the remaining hadronic piece
using gauge invariance, current conservation, parity invariance (for
the electromagnetic interaction) and time reversal invariance and
then express what is left in terms of the hadronic structure func-
tions F1 and F2 ( plus F3 for weak interactions)

• For some purposes it is often preferable to work directly with the
cross sections since that avoids any model-dependent assumptions
associated the extraction of the structure functions

• On the other hand, the structure functions are easy to interpret in
terms of the parton structure of the target

• I will summarize here the structure function approach



Start with a few definitions for the process l(k) + A(P ) → l′(k′) + X in the
target rest frame where M denotes the target mass

A

l
l

X

DIS

q2 = −Q2 = (k − k′)2 x = Q2/2P · q = Q2/2Mν

E = k · P/M E′ = k′ · P/M

ν = P · q/M = E − E′ W 2 = (P + q)2 = M2 + Q2

„

1

x
− 1

«

y = ν/E = 1− E′/E (evaluated in the lab frame where P µ = (M, 0, 0, 0))

= P · q/P · k (in an arbitrary frame)

s = (k + P )2 = M2 + 2ME Can also write Q2 = 2MExy



The cross section can be written as

σ =
1

4ME

Z

d3k′

(2π)32E′

X

spins

X

X

NX
Y

n=1

Z

d3pn

(2π)32En
|Tfi|2(2π)4δ(k+P−k′−pX)

• The leptonic and hadronic phase space variables have been written sep-
arately

• Can simplify this by being differential in the scattered lepton energy and
scattering solid angle.

• Can also express Tfi as

Tfi =

„

gW

2
√

2

«2

u(k′)γµ(1− γ5)u(k)
1

q2 −M2
W

Jµ

• Here Jµ is the matrix element of the weak charged current operator be-
tween the initial and final hadronic states with a factor of gW

2
√

2
removed.



The leptonic phase space factor can be simplified using

d3k′

E′ =
k′2dk′dΩ′

E′ = k′dE′dΩ′

≈ E′dE′dΩ′

where the last line follows if the recoil lepton mass is neglected.

Convenient to use GF√
2

=
g2

W

8M2

W

.

Exercise: show that

dσ

dE′dΩ′ =
π

4M

G2
F

2
RW (Q2)

(

E′

E

)

LµνW µν

where Lµν is given by the trace of the leptonic current

Lµν = 8
(

kµk′
ν + kνk′

µ − gµνk · k′ ± iǫµναβkαk′β)

where the +(−) corresponds to an incoming ν(ν̄).



W µν is given by

W µν =
(2π)3

4

∑

spins

∑

X

NX
∏

n=1

d3pn

(2π)32En

Jµ†Jνδ4(q + P − pX)

and the factor RW (Q2) is given by RW (Q2) =
[

M2

W

M2

W
+Q2

]2

.

The hadronic tensor, W µν , contains all the information pertaining to the
interaction of the exchanged vector boson with the target hadron.

Notice the part of Lµν that contains ǫµναβ. This comes from a trace of
four γ matrices with a γ5. This represent an interference term between
the vector and axial vector currents. Parity conservation in electromag-
netic interactions would prevent such a term from being present, but it
is present for the weak interactions.



The next step is to examine the tensor structure of W µν .

• It can be constructed from gµν , P µ, qµ, and ǫµναβ, where the last
factor is allowed if parity is not conserved.

• Note that terms proportional to qµ will give contributions propor-
tional to lepton masses when contracted with Lµν . Exercise: Show
this.

• There are then only three combinations that survive and the hadronic
tensor can be written as follows

W µν = −gµνF1 +
F2

Mν
P µP ν ∓ i

F3

2Mν
ǫµναβPαqβ



• The structure functions F1, F2, and F3 contain information on the
structure of the hadronic target

• They depend on the 4-vectors P and q through Lorentz scalars

• Since P 2 = M2 and q2 = −Q2, they can depend on Q2 and x = Q2

2P ·q ,
for example.

• The signs and various factors of Mν have been chosen to make the
final results simpler and to be in accordance with the usual (but
by no means universal) conventions.



Interpretation of F1 and F2

• F1 and F2 exist for both electromagnetic and weak interactions

• F3 results from axial vector-vector interference and is unique to the weak
interactions

In what follows I use photons, but the same is true for W and Z bosons. For
transverse photons

ǫµ(x) = (0, 1, 0, 0) ǫµ(y) = (0, 0, 1, 0) but we need an expression for ǫ(0)

Consider a frame where the proton and virtual photon four-vectors are as
follows:

P −→ ←− q

qµ = (0, 0, 0,−Q) q2 = −Q2 P µ = (P0, 0, 0, Pz)



Exercise: use P · q = Mν = PzQ and P 2 = M2 to show that

P µ = M

 
s

ν2 + Q2

Q2
, 0, 0,

ν

Q

!

We need ǫµ(0) such that ǫ(0) · q = 0, ǫ(0) · ǫ(x) = 0, and ǫ(0) · ǫ(y) = 0

Can choose ǫµ(0) = (1, 0, 0, 0)

For the electromagnetic interactions

Wµν = F1(−gµν +
qµqν

q2
) +

F2

P · q (Pµ +
qµP.q

q2
)(Pν +

qνP · q
q2

)

Transverse cross section: σT ∝ F1

Longitudinal cross section: σL ∝ −F1 + F2M
2 ν2+Q2

P ·qQ2

Exercise: Derive these and rewrite the last result as

−F1 +
F2

2x

„

1 +
4M2x2

Q2

«



Sometimes see the ratio

R =
σL

σT

=
F2

(

1 + 4M2x2

Q2

)

− 2xF1

2xF1

Interpretation:

• F1 measures the interaction of transverse photons

• Up to corrections of O(1/Q2), F2 − 2xF1 measures the interaction
of longitudinal photons



Exercise: Show that dσ
dx dy

= dσ
dE′dΩ′

M(E−E′)
E′

Exercise: Work out the contraction of Lµν with the hadronic tensor W µν

thereby showing that the cross section can be written as

dσ

dxdy
=

G2
F

2π
RW (Q2)s

»

xy2F1 +

„

1− y − M2x2y2

Q2

«

F2 ± y(1− y

2
)xF3

–

where the +(−) sign refers to ν(ν̄) scattering. Alternatively, using FL =
F2 − 2xF1 one can write

dσ

dxdy
=

G2
F

2π
RW (Q2)

s

2

ˆ`

1 + (1− y)2
´

F2 − y2FL ± y(2− y)xF3

˜

• To separate F2 and FL one needs to have data at fixed values of x and Q2,
but different values of y.

• Since Q2 = 2MExy this requires data from different beam energies



• With these definitions, we can now examine the form of the struc-
ture functions in the parton model

• Start with the basic definition of Wµν using a parton target

p1

p2

q

W µν =
(2π)3

2

1

2

X

spins

N

Z

d3p′

(2π)32E′
δ4(p′ − q − p)

`

u(p′)γµ(1− γ5)u(p)
´†

`

u(p′)γν(1− γ5)u(p)
´

• N is a normalization factor to be defined below



• Use d3p′

2E′ = d4p′δ(p′2) to get

W µν = 2Nδ(p′2)
“

pµp′ν + pνp′µ − 2p · p′gµν − iǫµναβpαp′β

”

• Next, assume that the parton carries a fraction η of the target’s 4-
momentum and neglect target mass effects. Thus, p = ηP

• With this definition,

δ(p′2) = δ[(p + q)2] = δ(q2 + 2p · q)

=
1

2Mν
δ(η − Q2

2Mν
) =

1

2Mν
δ(η − x)

• So, to this order, x is a measure of the momentum fraction carried by
the struck parton

• The normalization factor N corrects for the flux factor being that of the
parton, not the target hadron: N = 1/η



Exercise: Use p′ = p + q and p = ηP to get

W µν =
η

Mν
δ(η − x)

»

2P µP ν +
P µqν + P νqµ

η
+

q2

2η2
gµν − iǫµναβ Pαqβ

η

–

• From this expression one can read off the results

F̂1 = δ(η − x) F̂2 = 2ηδ(η − x) F̂3 = 2δ(η − x)

• Note that F̂L = F̂2 − 2xF̂1 = 0 in lowest order

• I have used the ˆ symbol to denote the contributions to the structure
functions at the parton level.

• The last relation above is called the Callan-Gross relation

• To calculate the hadronic structure function introduce a parton distribu-
tion function (PDF) defined such that Ga/A(x)dx gives the probability
of finding a parton a in a hadron A with a momentum fraction between
x and x + dx



Simple interpretation of σν,ν̄

Simplifying assumptions

• Use F2 = 2xF1 (Callan-Gross relation for spin-1/2 particles)

• xF3 = F2 (valid at large x or if q̄ = 0)

dσν,ν̄

dx dy
=

G2
F

2π
RW (Q2)sF2

»

y2

2
+ (1− y)± y(1− y

2
)

–

• The bracketed factor is 1 for νq or ν̄q̄ scattering

• It is (1− y)2 for νq̄ or ν̄q scattering

• Suppose one only has quarks - integrating on x gives the same overall
factor for ν or ν̄

• Integrating on y then gives σν = 3 σν̄

• Any deviation from 3 is evidence for antiquarks in the target



Exercise: let R = σν̄

σν . Then show that

R

xQ̄(x)dx
R

xQ(x)dx
=

3R− 1

3−R

Here Q(Q̄) represents the sum of the active quark (antiquark) PDFs. Thus,
neutrino and antineutrino cross sections give a measure of the contribution of
the antiquark PDFs relative to those of the quarks.



Why (1− y)2?

Recall that y = E−E′

E
= P ·q

P ·k = p·q
p·k

In the lepton-parton system

k =

√
ŝ

2
(1, 0, 0, 1) p =

√
ŝ

2
(1, 0, 0,−1) k′ =

√
ŝ

2
(1, sin θ, 0, cos θ)

Exercise: Show that 1− y = 1+cos θ
2

νq → µ−q′ ν̄q → µ+q′

ν
−→⇐ ←−⇒ q ν̄

−→⇒ ←−⇒ q

θ = π

µ−
←−⇒ −→⇐ q′ µ+ ←−⇐ −→⇐ q′

The z component of angular momentum is not conserved for the second case,
so it must vanish for θ = π.



PDF Sum Rules

PDFs are inherently non-perturbative and so can not be calculated using per-
turbative QCD. But we do know some properties they must satisfy. Denote
the different PDFs by a symbol corresponding to their flavor.

• The number of quarks (or antiquarks) in a proton is indeterminate since
quantum fluctuations can create qq̄ pairs which subsequently annihilate

• But the net number of u quarks should be two:

Z 1

0

dx (u(x)− ū(x)) = 2

• The net number of d quarks should be one:

Z 1

0

dx
`

d(x)− d̄(x)
´

= 1



• The net number of s quarks should be zero:

Z 1

0

dx (s(x)− s̄(x)) = 0

with similar relations for c and b quarks

• Note: This does not mean that s(x) ≡ s̄(x) – the s and s̄ PDFs can have
different x dependences

• Momentum must be conserved:

Z 1

0

dxx

"

X

q

(q(x) + q̄(x)) + g(x)

#

= 1

where g(x) denotes the gluon PDF



• The hadronic structure functions are given by weighting the partonic
structure function by the appropriate PDFs:

F2(x, Q2) = 2xF1(x, Q2)

=
X

q

Z

dη 2η [q(η) + q̄(η)] δ(η − x) =
X

q

2 x [q(x) + q̄(x)]

and

xF3(x, Q2) =
X

q

Z

dη 2 x [q(η)− q̄(η)] ηδ(η − x)

=
X

q

2 x [q(x)− q̄(x)]

• One can see that to this order the structure functions are independent
of Q2, which is the scaling result discussed earlier



Some Simple Examples

Remember the neutrino vertices: ν → µ−W+, ν̄ → µ+W−

F νp
2 = 2x [d + s + ū + c̄]

F νn
2 = 2x

ˆ

u + s + d̄ + c̄
˜

F νN
2 = x

ˆ

u + d + ū + d̄ + 2s + 2c̄
˜

where N = p+n
2

denotes an isoscalar target.

Exercise: Show that

F ν̄N
2 = x

ˆ

u + d + ū + d̄ + 2s̄ + 2c
˜

xF νN
3 = x

ˆ

u + d− ū− d̄ + 2s− 2c̄
˜

xF ν̄N
3 = x

ˆ

u + d− ū− d̄ + 2c− 2s̄
˜



More Examples

• F νN
2 = F ν̄N

2 if s = s̄, c = c̄

• xF νN
3 + xF ν̄N

3 = 2x
ˆ

u− ū + d− d̄
˜

• F νN
2 − xF νN

3 = 2x
ˆ

ū + d̄ + 4c̄
˜

• F ν̄N
2 − xF ν̄N

3 = 2x
ˆ

ū + d̄ + 4s̄
˜

So, by taking various linear combinations of structure functions, one
can separate the valence and antiquark distributions, at least in Leading
Order.



Which is better - cross sections or structure functions?

• Structure functions have intuitive interpretations, as shown previously

– Dependence on the vector boson polarization: FL vs F1

– Can separate valence and sea terms (at least in Leading Order)

• Three variables in the cross section, but only two in the structure func-
tions - easier to interpret

On the other hand...

• Extraction of structure functions is model dependent, e.g., need R to
separate out F2

• FL is zero in lowest order - so a Leading Order calculation starts at
O(αs) which is Next-to-Leading Order for F2 and xF3. This is because
FL is a difference of structure functions

• Cross sections are less model dependent - preferred for PDF global fitting

• No right answer for the question posed above


