Liquid Argon Detectors

NuSTEC Lecture, part 2 Mitch Soderberg Syracuse University / Fermilab

What I'm going to talk about

Last talk: the technology of liquid argon neutrino detectors

This talk: the physics capabilities and some of the challenges

Goals For This Lecture

- Show selected examples of physics potential of Liquid Argon Time Projection Chambers (LArTPCs)
- Get everyone thinking about some of the issues associated with analyzing data from a LArTPC.

Goals For This Lecture

- Show selected examples of physics potential of Liquid Argon Time Projection Chambers (LArTPCs)
- Get everyone thinking about some of the issues associated with analyzing data from a LArTPC.

Please ask questions at anytime!

Extracting Physics

- The LArTPC is an imaging device that provides fine-grained detail about interactions. Our analysis of this information should aspire to take maximal advantage of this.
- Argon is a nuclear target, so this presents challenges, and opportunities, when defining physics measurements to be conducted.
- Several people here have asked me to talk about reconstruction issues, so I will spend time on that.

The Challenge

Translate recorded events into detailed information about the interaction. Capture all we can see by eye.

The Challenge

Translate recorded events into detailed information about the interaction. Capture all we can see by eye.

The Challenge

Maybe some very low-level coherent noise on a certain set of channels

Unintentional charge collection on electronics board outside the detector

Translate recorded events into detailed information about the interaction. Capture all we can see by eye.

TPC Signal Development

- Ionization produced by charged-tracks creates a signal on TPC wires.
- The measured signal is the convolution of multiple physical processes.
- Try to model each process, in simulation and data-reconstruction.

 \mathcal{D}

 \mathcal{F}

 \mathcal{E}

Uber-function to represent LArTPC signal development

$\mathcal{M} = \mathcal{R} \otimes \mathcal{I} \otimes \mathcal{D} \otimes \mathcal{F} \otimes \mathcal{E}$

- Recombination \mathcal{R} \mathcal{I}
 - Attachment to Impurities
 - Diffusion
 - **Drift Field**
 - **Electronics Shaping**

In An Ideal World...

In An Ideal World...

 Apply the inverse of this uber-function to measured signal and recover the distribution of ionization in 3d x-y-z space, then proceed to apply reconstruction.

$$\begin{split} \mathcal{S}(\text{wire}, \text{time}) & \text{Signal measured on each wire as a function of time.} \\ \rho(x, y, z, t) & \text{Distribution of ionization in TPC as a function of time, space.} \\ \mathcal{S} = \mathcal{M} \cdot \rho \end{split}$$

$$\mathcal{M}^{-1}\mathcal{S} = \rho$$

In An Ideal World...

- Apply the inverse of this uber-function to measured signal and recover the distribution of ionization in 3d x-y-z space, then proceed to apply reconstruction.
- In reality, we have no such transformation function, so we must take a different approach.

 $\mathcal{S}(\mathrm{wire},\mathrm{time})$ Signal measured on each wire as a function of time. $ho(\mathrm{x},\mathrm{y},\mathrm{z},\mathrm{t})$ Distribution of ionization in TPC as a function of time, space.

$$\mathcal{S} = \mathcal{M} \cdot \rho$$
$$\mathcal{M}^{-1}\mathcal{S} = \rho$$

The Reconstruction Challenge

Angled wireplane geometry is very tricky to decipher. Hard enough to think in 3d, let alone in a tilted coordinate system

The Reconstruction Challenge Challenge geometry is very tricky to decipher. Hard enough to think in 3d, let alone in a tilted coordinate system

Muons Seen by 1 Upstream & 1 Downstream Paddle

The Reconstruction Challenge

- We rely on common drift-time coordinate that all wireplanes share to "match" objects between planes.
- If a track is parallel to wireplanes (i.e. all at one drift-time coordinate), there is ambiguity about how it actually travelled in space.
- If a track is steeply inclined to wireplanes (i.e. all ionization ends up on just a few wires), the pulse shapes become quite challenging to decipher.

Reconstruction Approach

- TPC reconstruction scheme builds up 3D objects from underlying 1-D, 2-D objects.
- Light reconstruction finds signals on multiple PMTs that are consistent in time and space.

Raw Signal Manipulation

- •Before any reconstruction takes place, raw signals from each wire can have electronics response deconvolved via a Fourier transform (FFT).
- •Bipolar signal shapes on the induction plane can be converted to unipolar during this FFT, facilitating Hit finding.
- •FFT technique also allows filtering to remove high/low freq. noise.

Hit-Finding

- A Hit is defined as a wire signal going above threshold for sufficient time.
- Hits are identified using a Gaussian fitting technique.
- Multi-Gaussian fit can be performed to identify closely spaced Hits.

Clustering

- A Cluster is a grouping of associated Hits.
- Several algorithms exist for this.
- Old Example: Density-based clustering (called "DBscan") allows arbitrarily shaped Clusters to be identified.
 - Define some notion of proximity and connectedness (adjustable parameters)
 Density-connected Hits are placed in a Cluster. "Noise" Hits are ignored.

Aunospheric v michaction

3D reconstr time) shared
Goal is gene particles foll
Input can be

ICARUS Event and Reconstruction

- Particles in the detector have distinct energy-deposition profiles as they come to a stop.
- A likelihood comparison is performed between the energy-deposition profile of a reconstructed track and predictions from GEANT.
- Notice that this technique offers little power to distinguish muons from pions.

Refs:

1.) A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC, R. Acciarri et al,

- Particles in the detector have distinct energy-deposition profiles as they come to a stop.
- A likelihood comparison is performed between the energy-deposition profile of a reconstructed track and predictions from GEANT.
- Notice that this technique offers little power to distinguish muons from pions.

^{1.)} A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC, R. Acciarri et al,

1.) A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC, R. Acciarri et al,

¹⁵

- Electron/Photon distinction provided by dE/dx difference at beginning of shower, plus topological clues like gaps between primary vertex and shower start.
- Very important capability for electron-neutrino appearance analyses.

- Electron/Photon distinction provided by dE/dx difference at beginning of shower, plus topological clues like gaps between primary vertex and shower start.
- Very important capability for electron-neutrino appearance analyses.

Calibration

- Test-beam exposure, LArIAT, will give us an invaluable data sample to measure dE/dx profiles for stopping particles of known identity.
- Can also study dependance of recombination on electric-field.
- Beam polarity is tunable, so can study possibility of muon sign-selection in non-magnetized detector (using 100% mu-decay, and ~75%/25% mu-capture/decay).

20

0

0.2

 $90cm = 6.4 X_0$

0.4

0.6

0.8

Detector Length (cm)

Laser Calibration

- Laser systems allows for in-situ mapping of E-field.
- Can precisely control where laser is pointing, so know exactly what reconstructed track should look like. Removes issues of multiple-scattering and delta-rays that muons have.

Read today's Fermilab Today

Refs:

1.) Measurement of the drift field in the ARGONTUBE LAr TPC with 266 nm pulsed laser beams, A. Ereditato et al, arXiv:1408.6635

Examples

- On the following slides I show examples of using the tools we currently have to do several measurements with ArgoNeuT data.
- As a reminder, ArgoNeuT has no light-collection system or laser calibration, but it does have MINOS as a muon spectrometer, which is a huge advantage.

Argentaria Besnoval

Electron Lifetime from Muons

- An example of the full reconstruction chain being used in an automated analysis is the measurement of argon purity using through-going muons.
- Due to non-infinite electron lifetime, tracks crossing further from the wireplanes will appear to have diminished signals.
- A fit is done to charge deposition vs. drift distance to extract the electron lifetime.

Refs:

1.)The ArgoNeuT Detectorin the NuMI Low-Energy Beam Line at Fermilab, C. Anderson et al, JINST 7 P10019 (2012)

Electron Lifetime from Muons

1.)The ArgoNeuT Detectorin the NuMI Low-Energy Beam Line at Fermilab, C. Anderson et al, JINST 7 P10019 (2012)

²¹

Electron Lifetime from Muons

- An example of the full reconstruction chain being used in an automated analysis is the measurement of argon purity using through-going muons.
- Due to non-infinite electron lifetime, tracks crossing further from the wireplanes will appear to have diminished signals.
- A fit is done to charge deposition vs. drift distance to extract the electron lifetime.

1.) *The ArgoNeuT Detectorin the NuMI Low-Energy Beam Line at Fermilab*, C. Anderson et al, JINST 7 P10019 (2012)

²¹

CC-Inclusive

- Identify charged-current muon events in both neutrino and antineutrino mode.
- Selection simply requires a well reconstructed muon track originating in the TPC, matched to MINOS. No other restriction on activity in the event (i.e. could be QE, Res, DIS, etc...).
- Fully automated analysis.

CC-Inclusive

• Differential cross-sections in terms of muon angle and momentum.

CC-Inclusive

CC-Coherent

- Two-track event selection.
 - muon matched to MINOS
 - pion candidate track likely not contained, so:
 - must have <dE/dx> consistent with MIP
 - if contained, use calorimetry-based PID
 - no activity around vertex
- Fully automated analysis.

$$u_{\mu} + \mathbf{A}
ightarrow \mu^{-} + \pi^{+} + \mathbf{A}$$
 $\bar{
u}_{\mu} + \mathbf{A}
ightarrow \mu^{+} + \pi^{-} + \mathbf{A}$

CC-Coherent

- Low statistics in ArgoNeuT, and small detector size removes ability to contain pion and cut on Itl
- MicroBooNE will solve both of those issues, in addition to being in a lowerenergy beam where this process has been the source of experimental intrigue.

CC-Coherent

- Cross-sections measured for ArgoNeuT's neutrino/antineutrino sample.
- Use of BDT and similar machine-learning algorithms offer powerful discrimination tools.

CC 0-pion

- T Study charged-current events with no final-state pions, and any number of protons. Algo Neu T vuller of protons.
- Muons are matched to MINOS, and protons are contained and identified based on calorimetry.
- Proton kinetic energy threshold is 21 MeV.
- Hand-scanning is used in reconstruction of very low-energy protons.

CC 0-pion

• Distribution of N-protons in these events compared to model. ti- v_{μ} CC 0 pion cross section - comparison with GiBUU MC*

 $u_{0\pi} = 0.48 \ 10^{-38} cm^2 / nucleon$

lata sample - 4

- Looking in two-proton subsample, find evelopment configuration that is a signature of correlated nucleons.
- Statistics are low, but results are suggestive that SRC are active. MicroBooNE can look for this, and will have an even lower proton threshold.

FIG. 2. Cosine of the angle γ between the two protons (Lab frame) vs. the momentum of the least energetic proton in the pair for the 30 events in the $(\mu^- + 2p)$ sample. In the inset is the distribution of $\cos(\gamma)$.

1.) The detection of back-to-back proton pairs in Charged-Current neutrino interactions with the ArgoNeuT Detector in the NuMI low energy beam line, R. Acciarri et al, PRD 90 012008 (2014)

Hyperon Production

- Spatial resolution allows displaced vertices to easily be identified.
- Look for displaced vertex consistent with neutral Lambda decay.
- ArgoNeuT has a small sample of candidates that are being analyzed.

Apologies for skipping...

- Light-collection system reconstruction and matching to TPC information.
- Neutral-current analysis and pi0 mass reconstruciton.
- Lots of other great topics pursued by MicroBooNE/ LArIAT/LAr1-ND/LBNF/ICARUS/etc...

Conclusions

• LArTPCs offer detailed view into neutrino interactions.

- Reconstructing interactions presents interesting challenges. Very active software development effort ongoing to catch up to the pace of hardware development.
- Numerous physics results have already emerged (e.g. -ArgoNeuT, ICARUS), and with MicroBooNE/LArIAT poised to take data you should expect many more.

THANK YOU FOR YOUR ATTENTION!

ArgoNeuT Data acciting

- Neutral pions can be identified through both calorimetry and topology.
- Two showers, with photon-like dE/dx, pointing to a common vertex.

