Ab initio methods for nuclei

Lecture I

Omar Benhar

INFN and Department of Physics
＂Sapienza＂Università di Roma．I－00185 Roma，Italy

NuSTEC Training in Neutrino－Nucleus Scattering Physics
FNAL，October 21－29， 2014

Outline

^ Lecture I: Nuclear Many-Body Theory

- Disclaimer
Δ Basic facts on nuclear forces
- Untying the Gordian knot of Nuclear Physics
\triangleright The nuclear hamiltonian
- Introduction to Nuclear Many-Body Theory (NMBT)
^ Lecture II: Nucleon Green's function and nuclear response at low to moderate momentum transfer
\star Lecture III: Electron and neutrino cross section in the impulse approximation and beyond

Disclaimer

* Bottom line: there is no such thing as a ab initio method to describe the properties of atomic nuclei.
* In the low-energy regime, the fundamental theory of strong interactions (QCD) is nearly intractable already at the level required for the description of hadrons, let alone nuclei
* Nuclei are described in terms of effective degrees of freedom, protons and neutrons, and effective interactions, mainly meson exchange processes
\star As long as their size is small compared to the relative distance, treating nucleons as individual particles appears to be reasonable

The paradigm ${ }^{\dagger}$

\star Nucleons behave as non relativistic particles, the dynamics of which are described by the hamiltonian

$$
H=\sum_{i=1}^{\mathrm{A}} \frac{\mathbf{k}_{i}^{2}}{2 m}+\sum_{i<j=1}^{\mathrm{A}} \mathrm{v}_{i j}+\ldots
$$

where $\mathrm{v}_{i j}$ is nucleon-nucleon (NN) interaction potential, and the ellipses refer to the possible occurrence of forces involving more thah two nucleons (to be discussed at a later stage)
\star The main qualitative features of the potential $\mathrm{v}_{i j}$ can be deduced from nuclear systematics (binding energies, charge-density distributions, energy spectra...)

[^0]
Binding energies and charge-density distributions

* The observation that the nuclear binding energy per nucleon is roughly the same for $\mathrm{A}>20$, its value being $\sim 8.5 \mathrm{MeV}$, suggests that the range of the NN interaction is short compared to the nuclear radius.
\star The observation that the charge-density in the nuclear interior is constant and independent of A indicates that the NN forces become strongly repulsive at short distance

Isotopic invariance

\star The spectra of mirror nuclei, e.g. ${ }_{18}^{35} \mathrm{Ar}$ and ${ }_{17}^{35} \mathrm{Cl}$ are identical, up to small electromagnetic corrections
\star Nuclear forces exhibit charge independence, which is a manifestation of a more general property: isotopic invariance

\star Neglecting the small mass difference, nucleons can be seen as two states of the same particle, the nucleon, specified by their isospin, $\tau_{3}= \pm 1 / 2$.
\star The force acting between two nucleons depends on the total isospin of the pair, $T=0$ or 1, but not on its projection T_{3}.

Untying the Gordian knot of nuclear physics

\star In principle, the form of the potential may be accurately determined through a fit to the large database of nuclear properties.
\star The calculations needed to obtain these quantities necessarily involve approximations, casting a strong bias on the underlying models of nuclear interactions.

* The inextricable tie between the uncertainty associated with the nuclear hamiltonian and that arising from the solution of the nuclear many-body problem can be severed determining the nuclear hamiltonian from the properties of exaxtly solvable few-nucleon systems.

[^1]
The NN force: Yukawa's theory (AD 1935)

$\star \mathrm{NN}$ interaction mediated by a particle of mass $\mu \sim 1 \mathrm{fm}^{-1}=200 \mathrm{MeV}$, to be later identified with the π-meson, or pion
\star The pion, discovered in 1947, is a pseudoscalar (spin-parity 0^{-}) particle of mass $m_{\pi} \approx 140 \mathrm{MeV}$
\star The three charge states of the pion, $\pi^{ \pm}$and π^{0}, form the isospin triplet $\boldsymbol{\pi}$
\star Simplest πN interaction
lagrangian compatible with the observation that NN interactions conserve parity

$$
\mathcal{L}_{Y}=i g \bar{N} \gamma^{5} \boldsymbol{\tau} N \pi
$$

$$
N=\binom{p}{n}, \pi=\left(\begin{array}{c}
\left(\pi^{+}+i \pi^{-}\right) / \sqrt{2} \\
\left(\pi^{+}-i \pi^{-}\right) / \sqrt{2} \\
\pi^{0}
\end{array}\right)
$$

The one-pion-exchange (OPE) potential

« Potential extracted from the non relativistic reduction of the NN amplitude, at 2 nd order in \mathcal{L}_{Y}

$$
\begin{aligned}
& \mathrm{v}_{\pi}= \frac{g^{2}}{4 m^{2}}\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\nabla}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{\nabla}\right) \frac{\mathrm{e}^{-m_{\pi} r}}{r} \\
&= \frac{g^{2}}{(4 \pi)^{2}} \frac{m_{\pi}^{3}}{4 m^{2}} \frac{1}{3}\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)\left\{\left[\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right)+S_{12}\left(1+\frac{3}{x}+\frac{3}{x^{2}}\right)\right] \frac{\mathrm{e}^{-x}}{x}\right. \\
&\left.-\frac{4 \pi}{m_{\pi}^{3}}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right) \delta^{(3)}(\mathbf{r})\right\} \\
& S_{12}=\frac{3}{r^{2}}\left(\boldsymbol{\sigma}_{1} \cdot \mathbf{r}\right)\left(\boldsymbol{\sigma}_{2} \cdot \mathbf{r}\right)-\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right)
\end{aligned}
$$

\star Note that the potential is spin dependent and non sperically symmetric
\star For $g^{2} / 4 \pi \approx 14$ the above potential provides a reasonable description of NN scattering in states of high angluar momentum, driven by long-range interactions

Phenomenological potential models

\star Phenomenological potentials describing the full NN interaction can be written in the form

$$
\mathrm{v}=\mathrm{v}_{S}+\mathrm{v}_{I}+\tilde{\mathrm{v}}_{\pi}
$$

where $\tilde{\mathrm{v}}_{\pi}$ is the OPE potential, stripped of the δ-function contribution
\star State-of-the-art NN potential models include momentum-dependent and charge-symmetry breaking terms. The widely used ANL v_{18} potential is written in the form

$$
\begin{gathered}
\mathrm{v}_{12}=\sum_{p=1,18} \mathrm{v}^{(p)}(r) O_{12}^{(p)} \\
O_{12}^{(p)}=\left[\mathbb{1},\left(\boldsymbol{\sigma}_{1} \cdot \sigma_{2}\right), S_{12}, \mathbf{L} \cdot \mathbf{S}, \mathbf{L}^{2}, \mathbf{L}^{2}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right),(\mathbf{L} \cdot \mathbf{S})^{2}\right] \otimes\left[1,\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)\right] \\
{\left[\mathbb{1},\left(\sigma_{1} \cdot \boldsymbol{\sigma}_{2}\right), S_{12}\right] \otimes T_{12}, \text { and }\left(\tau_{z 1}+\tau_{z 2}\right)} \\
T_{12}=\frac{3}{r^{2}}\left(\boldsymbol{\tau}_{1} \cdot \mathbf{r}\right)\left(\boldsymbol{\tau}_{2} \cdot \mathbf{r}\right)-\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)
\end{gathered}
$$

Phenomenological approach (continued)

\star The phenomenological potentials reproduce the two-nucleon data, for both bound and scattering states, by construction
\star Phase shifts extracted from NN scattering data

\star Differential cross section in the proton-neutron channel

The NN potential in the ${ }^{1} \mathrm{~S}_{0}$ channel

\star Phenomenological models
\star Lattice $\mathrm{QCD}, m_{\pi}=530 \mathrm{MeV}$

\star Chiral perturbation theory provides an alternative scheme, allowing to derive the two- and three-nucleon potentials within a framework preserving the symmetries of QCD.

Three-nucleon interactions

\star Interactions involving more two nucleons arise as a consequence of the internal structure of the participating particles
\star The main contribution to the three nucleon forces comes from the Fujita-Miyazawa mechanism

* Phenomenological three-nucleon potentials, written in the form

$$
V_{i j k}=V_{i j k}^{2 \pi}+V_{i j k}^{N}
$$

are determined through a fit to the properties of the three-nucleon
 system

The nuclear many-body problem

* The starting point for the description of nuclear properties within the Nuclear Many-Body Theory is the solution of the Schrödinger equation

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

\star Quantum Monte Carlo results are available for $A \leq 12$.

Nuclear Many-Body Theory (NMBT)

* In principle, more complex calculations (i.e. involving different observables and heavier nuclei) may be performed in perturbation theory, setting

$$
H=H_{0}+H_{I}
$$

H_{0} being the hamiltonian describing A non interacting nucleons.
\star Problem: due to the nature of the NN potential, the matrix element of the perturbaton between stets belonging to the base of eigenstates of H_{0}

$$
\left\langle n_{0}\right| H_{I}\left|m_{0}\right\rangle \quad, \quad H_{0}\left|n_{0}\right\rangle=\mathcal{E}_{n}\left|n_{0}\right\rangle
$$

turn out to be large. Perturbative expansions are useless.
\star Two possible solutions:

- Redefine the perturbing hamiltonian
\triangle Redefine the basis

Isospin-symmetric nuclear matter

\star Isospin-symmetric nuclear matter (SNM) can be thought of as a giant nucleus, with equal numbers of protons and neutrons interacting through nuclear forces only.

* The understanding of SNM, besides being a useful intermediate step towards the description of real nuclei, is needed to develop realistic models of neutron star matter.
\star The calculation of the properties of SNM is greatly simplified by translational invariance
\star Basis states

$$
\left|n_{0}\right\rangle=\frac{1}{\sqrt{\mathrm{~A}!}} \operatorname{det}\left\{\varphi_{\mathbf{k} \sigma \tau}(\mathbf{r})\right\} \quad, \quad \varphi_{\mathbf{k} \sigma \tau}(\mathbf{r})=\frac{1}{\sqrt{V}} \mathrm{e}^{\mathbf{k} \cdot \mathbf{r}} \chi_{\sigma} \eta_{\tau}
$$

where V is the normalisation volume, while χ and η are the Pauli spinors belonging to the spin and isospin space, respectively.
\star In the ground state the momenta of the occupied states fulfill

$$
|\mathbf{k}|<k_{F}=\left(3 \pi^{2} \rho / 2\right)^{1 / 3} \quad, \quad \rho=A / V
$$

G-matrix perturbation theory

\star Replace the bare NN potential with the G - matrix, describing NN scattering in the nuclear medium

$$
\mathrm{v} \rightarrow G(e)=\mathrm{v}-\mathrm{v} \frac{Q}{e} G=\mathrm{v} \Omega
$$

\star The expansion in powers of matrix elements of the operator $\zeta=1-\Omega$ turns out to be convergent
\star Rate of convergence not fully established
\star Treatment of three-nucleon forces involves non trivial problems

Correlated Basis Function (CBF) perturbation theory

\star Replace the basis states of the non interacting system with the set of correlated states

$$
\begin{gathered}
|n\rangle=\frac{F\left|n_{0}\right\rangle}{\left\langle n_{0}\right| F^{\dagger} F\left|n_{0}\right\rangle}{ }^{1 / 2} \\
F=\mathcal{S} \Pi_{j>i} f_{i j} \quad, \quad f_{i j}=\sum_{p} f^{(p)}\left(r_{i j}\right) O_{i j}^{(p)} \quad, \quad\left[f_{i j}, f_{j k}\right] \neq 0
\end{gathered}
$$

\star Perturbing hamiltonian defined in terms of matrix elements in the correlated basis

$$
\begin{gathered}
H=H_{0}+H_{I} \\
\langle m| H_{0}|n\rangle=\delta_{m n}\langle m| H|n\rangle,\langle m| H_{I}|n\rangle=\left(1-\delta_{m n}\right)\langle m| H|n\rangle
\end{gathered}
$$

\star If the correlated states have large overlaps with the true eigenstates of the hamniltonian, the perturbative expansion in powers of H_{I} is rapidly convergent

Cluster expansion and FHNC summation scheme

\star The calculation of matrix elements of many-body operators between correlated states involves prohibitive difficulties
\star The cluster expansion formalism (consider the ground state expectation value of the hamiltonian, as an exmple)

$$
\langle 0| H|0\rangle=\frac{k_{F}^{2}}{2 m}+\sum_{n}(\Delta E)_{n}
$$

$(\Delta E)_{n}$ is the contribution arising from subsystem (clusters) consisting of n nucleons
\star The terms of the cluster expansion are represented by diagrams, that can be classified according to their topological structure and summed to all orders solving a set of integral equations, called Fermi-Hyper-Netted-Chain (FHNC) equations

Correlation functions

* The shapes of the correlation functions $f^{(p)}(r)$ are determined solving a set of Euler-Lagrange equations, resulting from the minimization of the hamiltonian expectation value in the correlated ground state

$$
E_{V}=\min \langle 0| H|0\rangle \geq E_{0}
$$

Application of CBF perturbation theory

\star CBF has been widely employed to study both structure and dynamics of nuclear matter and nuclei: the available results (to be discussed in the next lectures) include
\triangleright Dynamic response to scalar and electromagnetic interactions at low to moderate momentum transfer ($q \lesssim 400 \mathrm{MeV}$)
\triangleright Green's functions
\triangleright Electron and neutrino cross sections in the impulse approximation (IA) regime ($q \gtrsim 600 \mathrm{MeV}$)

Summary of Lecture I

* In spite of the fact that no truly ab initio approach is available, a consistent description of a variety of nuclear properties can be obtained from approaches based on effective degrees of freedom and effective interactions.
\star Highly realistic nuclear hamiltonian can be derived from the analysis of the properties of exactly solvable few-nucleon systems.
\star The formalism of many-body theory has reached the degree of maturity required for the treatment of nuclear structure and dynamics based on realistic hamiltonian.

[^0]: ${ }^{\dagger}$ Paradigm: a phylosophical or theoretical framework of any kind (Merriam-Webster)

[^1]: *A metaphor for an apparently intractable problem solved by thinking "out of the box".

