application level monitoring for LHC experiments with the experiment dashboard

Benjamin Gaidioz

Hepix fall 2007

the experiment dashboard project

- ▶ a monitoring project, showing the activity of VOs on the grid,
 - integration of several informations. For example:
 - grid info: jobs, computing/storage resources, topology,
 - ▶ VO info: type of job, application exit code, datasets.
- a project from EGEE/ARDA (CERN),
- a framework for collecting and showing information.

▶ "home page"

outline

the project

the dashboard framework operations

the applications

job monitoring data management monitoring

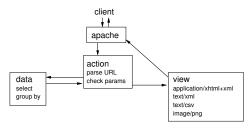
conclusion

conclusion & future plans

outline

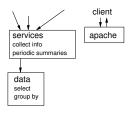
the project the dashboard framework operations

the applications job monitoring data management monitoring


conclusion & future plans

the dashboard framework

- most of the applications are implemented using a common Python framework.
 - clear distinction between information storage, information queries and rendering:


- support for API, CLI.
- performance: thread safety + session pooling + apache/mod_python,
- even a developer's guide is available, with examples.

the dashboard framework

- most of the applications are implemented using a common Python framework.
 - clear distinction between information storage, information queries and rendering:

- support for API, CLI.
- performance: thread safety + session pooling + apache/mod_python,
- even a developer's guide is available, with examples.

features

- based on HTTP,
- multiple output formats (text/xml and text/csv coming for free),

```
curl -H 'Accept: text/xml' http://...
```

framework for API and CLI: based on HTTP, man pages, build of the command-line tool, common options,

```
from dashboard.api.production.ProductionQuery import ProductionQuery
query = ProductionQuery('dashb-atlas-prodsys-test.cern.ch', 80)
sites = query.errors(error='WRAPLCG_STAGEOUT_LCGCR',
    grouping='site', grid='LCG')
```

- framework for permanent services (info collectors, computation of summaries, etc.): monitoring, babysitting, common configuration, etc.
 - status exported to our main web server,
 - simple alerts in case of warning status: e-mail or SMS.

releasing and build system

- ▶ a project module has a stable/unstable/nightly release,
 - RPMs are currently distributed using apt,
 - we also distribute some external RPMs (javascript toolkits, python packages not available in SLC4),
- the build system is based on the python distutils,
 - automatic building of SLC4 RPMs running at night,
 - also builds and installs the latest documentation (docbook),
 - (doesn't run the unit tests yet.)
 - possibility to trigger the build at anytime if needed.

operations

- applications using the common framework:
 - same tools maintenance, same log files, similar services, etc.
 - maintenance guides, documentation.
- hosts are SLC4 and are quattor managed,
- about maintenance, some recent developments:
 - dashboard services and Apache now running as "dashbop" UNIX user.
 - definition of an operator quattor role,
 - operators can run a limited set of commands: restart httpd, restart dashboard services,
 - permits to implement some simple and safe maintenance by non-experts.
- ▶ but still some legacy applications (no framework, SLC3, etc.).

operations (coming)

- most of our applications don't generate much load on the same host:
 - but it's not practical to run several per host,
 - applications A and B may require at some point different releases of a common dashboard RPM,
 - maintenance of A impacts B (restart httpd, same configuration files, same log files.),
 - it's a limit of our framework (not easy to have two configurations).
- dashboard applications are probably good candidates for hardware virtualization,
 - it could probably be practical for testing purposes (check the installation on a new host or maintenance procedure, run full functionality tests.

outline

the project the dashboard framework operations

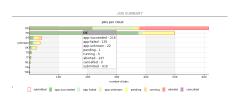
the applications job monitoring data management monitoring

conclusion & future plans

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB.
- installed for all four main experiments, plus the "vlemed" VO.

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- installed for all four main experiments, plus the "vlemed" VO.

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

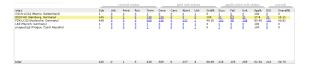

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

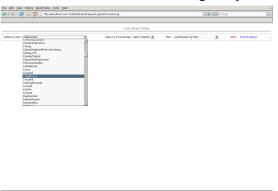
- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

- grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

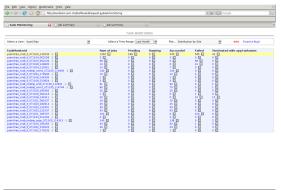

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VQ.

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- installed for all four main experiments, plus the "vlemed" VO.

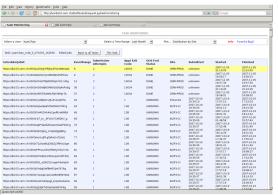

- grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB,
- ▶ installed for all four main experiments, plus the "vlemed" VO.

- ▶ grid info taken from RGMA, GridPP XML files, LCG BDII,
- VO info: sent by jobs (using Monalisa, or read bookkeeping DB.
- installed for all four main experiments, plus the "vlemed" VO.

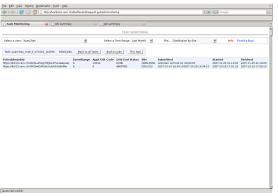


- show "my tasks",
- progress of each, investigate the reasons of the failures.

- show "my tasks",
- progress of each, investigate the reasons of the failures.



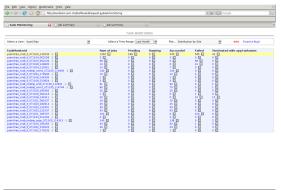
- show "my tasks",
- progress of each, investigate the reasons of the failures.



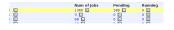
- show "my tasks",
- progress of each, investigate the reasons of the failures.

- show "my tasks",
- progress of each, investigate the reasons of the failures.

- show "my tasks",
- progress of each, investigate the reasons of the failures.



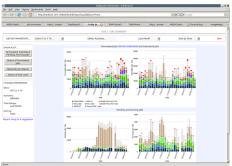
- show "my tasks",
- progress of each, investigate the reasons of the failures.



- show "my tasks",
- progress of each, investigate the reasons of the failures.

- show "my tasks",
- progress of each, investigate the reasons of the failures.

- show "my tasks",
- progress of each, investigate the reasons of the failures.


- show "my tasks",
- progress of each, investigate the reasons of the failures.

grid job monitoring: summaries

permits to show precompute summaries (faster queries),

- for application exit codes, VO activities, etc.
- same information as before.

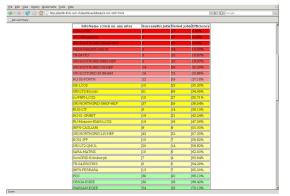
grid job monitoring: summaries

permits to show precompute summaries (faster queries),

- ▶ for application exit codes, VO activities, etc.
- same information as before.

grid site reliability

- uses RGMA and IC-XML info for computing efficiency of sites,
- ▶ aware of *middleware resubmissions* to sites *A*, *B* and *C*,



computation of daily rates, possibility to dig in the information.

grid site reliability

- uses RGMA and IC-XML info for computing efficiency of sites,
- ▶ aware of *middleware resubmissions* to sites *A*, *B* and *C*,

computation of daily rates, possibility to dig in the information.

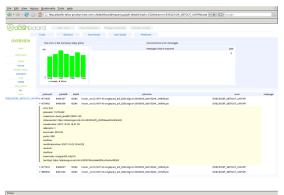
grid site reliability

- uses RGMA and IC-XML info for computing efficiency of sites,
- ▶ aware of *middleware resubmissions* to sites *A*, *B* and *C*,

computation of daily rates, possibility to dig in the information.

- monitoring offloaded to the dashboard,
- target: "shifters",

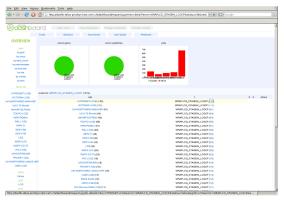
- monitoring offloaded to the dashboard,
- target: "shifters",


- monitoring offloaded to the dashboard,
- ► target: "shifters",

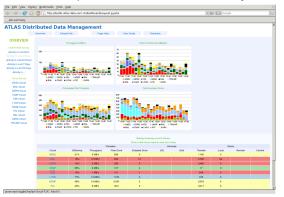
- monitoring offloaded to the dashboard,
- target: "shifters",

- monitoring offloaded to the dashboard,
- target: "shifters",


- monitoring offloaded to the dashboard,
- target: "shifters",


- monitoring offloaded to the dashboard,
- target: "shifters",

- monitoring offloaded to the dashboard,
- target: "shifters",



- close collaboration between CMS and the dashboard,
- the CMS production agents publish their status in the dashboard (HTTP POST) in real time,
- dashboard services are computing periodic statistics,
- ▶ the *view* is *not* implemented with the dashboard:
 - info is retrieved using the dashboard interface,
 - CMS will make their own interface on top.

- activity conducted with ATLAS DDM (distributed data management),
- show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- info is published directly by the DDM servers, using a specific API (a dashboard API based on HTTP).

4 □ → 4 □ → 4 □ →

- activity conducted with ATLAS DDM (distributed data management),
- show the status and performance of the DDM system:

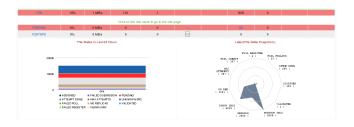
Activity Summary (Last 4 Hours)										
Glick on the cloud name to view list of sites										
	Transfers			Services		Errors				
Cloud	Efficiency	Throughput	Files Done	Datasets Done	DQ	Grid	Transfer	Local	Remote	Central
ASGC	21%	3 MB/s	296	0			1105	0		
BNL	19%	12 MB/s	662	13			2788	62		
CERN	14%	3 MB/s	389	0			2469	0		
CNAP	86%	2 MB/s	107	4			17	0		
FZK	10%	1 MB/s	101	1			908	0		
LYON	77%	10 MB/s	1139	2			336	0		
NDGF	48%	10 MB/s	2186	2			2333	0		
PIC	30%	5 MB/s	1021	0			2417	0		
PAL	36%	4 M8/s	345	1			621	0		
SARA	66%	5 MB/s	530	1			274	4		
TRIUMF	64%	1 MB/s	224	9			126	0		

- topology and names are specific to ATLAS, ATLAS datasets,
- info is published directly by the DDM servers, using a specific API (a dashboard API based on HTTP).

- activity conducted with ATLAS DDM (distributed data management),
- ▶ show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- info is published *directly* by the DDM servers, using a specific API (a dashboard API based on HTTP).

- activity conducted with ATLAS DDM (distributed data management),
- show the status and performance of the DDM system:


- topology and names are specific to ATLAS, ATLAS datasets,
- info is published directly by the DDM servers, using a specific API (a dashboard API based on HTTP).

- activity conducted with ATLAS DDM (distributed data management),
- show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- info is published *directly* by the DDM servers, using a specific API (a dashboard API based on HTTP).

- activity conducted with ATLAS DDM (distributed data management),
- ▶ show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- info is published *directly* by the DDM servers, using a specific API (a dashboard API based on HTTP).

4 □ → 4 □ → 4 □ →

- activity conducted with ATLAS DDM (distributed data management),
- ▶ show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- info is published directly by the DDM servers, using a specific API (a dashboard API based on HTTP).

4 □ > 4 □ > 4 ≡ > 4

- activity conducted with ATLAS DDM (distributed data management),
- show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- info is published directly by the DDM servers, using a specific API (a dashboard API based on HTTP).

4 □ → 4 同 → 4 回 → 4

- activity conducted with ATLAS DDM (distributed data management),
- ▶ show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- ▶ info is published *directly* by the DDM servers, using a specific API (a dashboard API based on HTTP).

4 □ > 4 □ > 4 ≡ > 4

- activity conducted with ATLAS DDM (distributed data management),
- ▶ show the status and performance of the DDM system:

- topology and names are specific to ATLAS, ATLAS datasets,
- ▶ info is published *directly* by the DDM servers, using a specific API (a dashboard API based on HTTP).

4 □ → 4 同 → 4 回 → 4

outline

the project

the dashboard framework operations

the applications

job monitoring data management monitoring

conclusion

conclusion & future plans

conclusion & future plans

→ dashboard home page

- framework and operations:
 - installation, maintenance procedures,
 - systematic testing (unit tests).
- applications:
 - grid jobs: more info sources and support for pilot jobs,
 - ▶ integrate more our applications with themselves (!),
 - develop the integration with external tools (python API),
 - alert systems.