Running EGEE services and worker nodes using virtual machines

M. Ruda, J. Svec
CESNET
What is MetaCenter

- academic grid infrastructure in Czech republic
- consists of centers at different universities
 - Masaryk University in Brno
 - Charles University in Prague
 - West Bohemian university in Pilsen
 - and at CESNET
- hardware – around 750 CPUs
 - mostly XEON/Opteron SMP clusters
 - SGI Altix servers
 - Opteron 16way servers
- dedicated network between sites
 - 10Gbps Ethernet
 - DWDM optical network
- participating in EGEE/EGEE2 with another 250 CPUs
why virtualization?
- attempt to create IP layer for grid environments
- sharing of environment control between users/admins

could enhance MetaCenter (or any grid) in several ways
- variety of user requirements => several machines with different OS or Linux flavor on the same machine
- support for various grid environments => possibility to run different images for different groups, support different grid middleware
- migration => better scheduling, robustness
- suspend/resume => checkpointing, interactive jobs
- isolation => provide illusion of dedicated cluster
Current usage of virtual machines

- portability tests, running services in different Linux distributions
 - environment for software development
 - portability tests (EGEE LB service)
 - simulation of distributed environment
 - some software may require specific Linux distribution

- server consolidation
- EGEE/MetaCenter consolidation
- job preemption
Xen vs. Vserver

■ Xen
 • para virtualization due to performance
 • useful for complete encapsulation (user supplied images)
 • support for complete linux distributions
 • perfect solution for service consolidation
 • currently used for EGEE/MetaCenter consolidation

■ Vserver
 • one kernel space
 • no performance penalty
 • better memory management, system daemons/services running only once
 • may be better solution for preemption (two domains of the same flavor)
Xen performance results / issues

- good results on small SMP machines / minimal delay for CPU, memory, disk intensive applications
- bad results for fast networks – one CPU is required bridging on full speed 1Gb ethernet
- initial tests with HVM not encouraging
- good results for Infiniband – driver runs only in domU
- lack of IP addresses => IPv6
Xen overhead

- active use of memory
 - dom0
 - every running domU needs at least 100MB of memory

- disk partitions dedicated to different VMs
 - not easy (read only) sharing of root filesystems
 - required splitting of scratch partitions
Server consolidation

- primary motivation – efficient use of hardware
 - EGEE in a box
 - 12 domains running all EGEE services in different VMs (WMS, LB, MyProxy, VOMS, CE, SE, UI...)
 - used for production (prague_cesnet) and pre-production testbed (prague_cesnet_pps), development and testing
 - also used for production WMS for VOCE VO
- DELL PE1950, 2x 3GHz quadcore Xeons, 16GB
- Xen is perfect solution, overhead is minimal
 - all services running all the time, statical splitting of memory is OK
 - root filesystem is different for different domains
• primary motivation – allow coexistence of EGEE and MetaCenter environment
• two images running all the time – Debian/OpenSuse (MetaCenter) and SLC (EGEE)
• EGEE gateway (CE) submits to standard PBS, but to special queue
• dynamic allocation of resources to EGEE and MetaCenter maintained by PBS
• PBS must be aware, that two Vms share the same node, but with minimal changes on PBS side => Magrathea project (more on SC07)
• no changes to EGEE software
• verified on small testbed, just now being deployed on new cluster (10x Altix 310 => 80 cores)
integrating virtual machines and PBS
- each node can run several VMs at a time
- at most one VM on each node is active
- however, a VM can be activated even if another one is active – preemption
- active VM is provided with “all” CPU power and memory

implementation
- PBS cannot recognize virtual machines from real ones
- special PBS attribute to distinguish amongst free, running and occupied machines
- modified PBS scheduler schedules jobs to free machines only
- current state of VMs is maintained by a daemon running on each physical machine
• first domain available for standard jobs
• second domain available for high priority jobs
• when high priority domain becomes active, almost all CPU/memory resources are given to this domain
• first domain remains alive (PBS monitoring works, no job resubmission)
• jobs in first domain can be suspended by SIGSTOP

• deployed on MetaCentre, cluster of 40 nodes (dual CPU), until the end of 2007 three more clusters (100 nodes) will be deployed too
Scale of deployment

- Current status
 - preemption – 40 nodes
 - Vserver – 2x 16CPU (Opteron)
 - EGEE/Meta consolidation – 10 nodes (2x quad core Xeon each)
 - server consolidation – 2 nodes (=> moving to one 2x quad core Xeon)
- All new clusters will be virtualized
- Experience
 - preemption – since summer 2007
 - server consolidation – more than a year
 - EGEE/Meta consolidation – about a year
 - Vserver – about a year