
LArSoft stakeholders meeting

E. Snider
L. Garren
G. Petrillo
R. Pordes

Fermilab

Feb 12, 2014

Feb 12, 2014 LArSoft Stakeholders Meeting 2

Today's agenda

 Transition follow-up

 Discussion of managing integration of code changes

 Compiler warnings

 Optimization (Gianluca)

3

Transition follow-up

 Treating the following open issues as highest priority to resolve

– Remote source installation and build

● Issues with encumbering low-level cmake configuration with cetbuildtools + ups

● Project under way to test proposed solution (Brett Viren, Ben Morgan + art team)

– Nightly release distribution

● Eventually aiming for cvmfs solution. Not supported by existing cvmfs solution.

● Working on an off-site nightly build. Requires changes to nightly build script.

– Problems with ups initialization and some mrb under csh and zsh

● Work planned, will start next week. Expect to be done in about 4 weeks

– mrb bug reports / feature requests

● Just released mrb v0_05_07 that fixes all outstanding issues

– mrb enhanced features

● Will identify when dependent products need to be included in the build

● Work will take about one month. Will start after shell problems fixed.

Feb 12, 2014 LArSoft Stakeholders Meeting 4

Managing code integration

 Recommend we adopt a process to manage integration of code
changes

– LArSoft serving multiple experiments

● Different priorities and lines of development for each

– Currently 46 code authors, > 1000 files, ~150k lines of code

● More authors coming on board as LBNE effort ramps up

Easy for one author to break the work of others

5

Managing code integration

 Several elements of a management system discussed previously

– Package librarians / area coordinators

● People who “own” the code integration process in one or more related packages

● Responsible for making sure the code builds, works as expected.

● Performs tagging or other “gate-keeping” functions if required

– Continuous integration (CI) processes / infrastructure

● A process for frequently merging changes into the main development line.

– Low latency between commit and build / test

– Verify that all changes pass a set of tests prior to integration
● eg, the feature being integrated + a standard suite of meaningful tests

– Trigger on commit or manually by librarian / area coordinator

● Some advantages

– Rapid detection of bugs, integration problems
● When problems found, can revert main branch before adversely affecting others

– Immediate feedback on code quality

– Can make (at least some) of the resulting builds available
● Constant availability of high-quality release near the main development head

6

Continuous integration

 An example: the CMS model

– Build infrastructure

● Utilizes Jenkins build scheduling / automation system

– Required relatively little additional programming compared to other choices (eg, buildbot)

● Executes the following workflow

– Build + unit testing + integration tests and physics validation + quality assurance tests

● Performs workflow 20-30 time per day; two delivered as full integration releases

● Occasional builds of special branches to accommodate large-scale changes,
product migrations, etc.

– git version control system

● Maintain “master” branch + many “topic branches”

● Developers make integration requests for specific topic branches

● Area coordinators review and approve changes based on test suite results (CI
process) --- only area coordinators can merge into equivalent of “develop”

– GitHub git repository hosting

● Provides tools to automate the code integration process + other features

Feb 12, 2014 LArSoft Stakeholders Meeting 7

LArSoft code integration

 Recommend we adopt a CI approach

 CI model requires infrastructure we don't yet have

– Integration build system

● SCD currently planning to provide a solution for IF

– Have experience with buildbot and Jenkins

– Target timescale is approx 6-9 months (not official!!)

● SCD gathering requirements for build platform

– Trying to ensure that the system will meet the needs of CI

● Brett V. has draft system requirements for LBNE. By my reading, very similar to
those needed for LArSoft

– A good start.

– Integration workflow automation

● May be part of above solution

Goal will be to make it possible for a single release manager to perform
integration

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Draft_LBNE_integration_build_and_test_system_requirements

Feb 12, 2014 LArSoft Stakeholders Meeting 8

LArSoft code integration

 What to do in the mean time

– Create frequent integration releases: vX_YY_XX

● At least weekly? + as needed

● More often?

– Rely on librarians

● Take responsibility for making sure code is ready for integration

– Build out formal integration test suite

● Project will coordinate this with the experiments

– Coordinate all breaking changes with the release manager

● This is important!!

– Continue to develop policies, procedures to assist

Discussion on this plan...

9

Primary package authors

 Identified “primary” package authors (our guesses).

AnalysisAlg
 baller
 tjyang
AnalysisBase
 andrzejs
 bjpjones
 tjyang
AnalysisExample
 seligman
CalData
 andrzejs
Calorimetry
 tjyang
ClusterFinder
 baller
 bcarls
DetSim
 andrzejs
 greenlee

LArG4
 brebel
LArPandoraAlgorithms
 blake
LArPandoraInterface
 blake
MCCheater
 brebel
OpticalDetector
 bjpjones
OpticalDetectorData
 ??
ParticleIdentification
 tjyang
PhotonPropagation
 bjpjones
RawData
 brebel

RecoAlg
 andrzejs
 baller
 bcarls
 bjpjones
 greenlee
 talion
 tjyang
 wketchum
RecoBase
 brebel
RecoObjects
 bjpjones
 greenlee
ShowerFinder
 andrzejs
SimpleTypesAndConstants
 brebel
Simulation
 brebel

EventDisplay
 brebel
EventFinder
 ??
EventGenerator
 brebel
Filters
 ??
Genfit
 echurch
Geometry
 brebel
HitFinder
 jasaadi
 talion
 wketchum

SummaryData
 brebel
TrackFinder
 bjpjones
 brebel
 echurch
 greenlee
 soderber
TriggerAlgo
 kterao
Utilities
 andrzejs
 bjpjones
 brebel
VertexFinder
 jasaadi
 wketchum

10

Compiler warnings

 Currently warnings are turned on, but are just “warnings”

– Using:

-Wall -pedantic -Wno-unused-local-typedefs -Wno-unused-variable

 Fixed warnings prior to cutting v1_00_02

– Fixed warnings found with a more demanding configuration :

-Wall -Wextra -pedantic -Wno-long-long -Winit-self -Wno-unused-local-
typedefs -Wformat-y2k -Wswitch-default -Wsync-nand -Wtrampolines
-Wlogical-op -Wno-ignored-qualifiers -Wno-error -Wno-overloaded-virtual
-Wno-unused-parameter -Wno-switch-default

– But did not enable all these flags in the repository

 Warnings identify lots of bugs, so want to make them errors

– Use the more strict list of warnings

– Then set -Werror

Target this change for a release within the next two weeks (??)

11

Code optimization

 Report from Gianluca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

