

Philippe CANAL
root.cern.ch

ROOT I/O Performance
In Multihread Environment

Philippe Canal
Fermilab

Philippe CANAL
root.cern.ch

 Overview

•  Support for I/O in multi-thread
environment

•  CMS Event

•  CMS Condition Database

•  Conclusion

2

root.cern.ch

Support

•  With be only for C++11 but both in v5 and v6.
– Relies on std::atomics

•  In v5, limited to non-interactive sessions
– High deadlock risk when starting the command line.

•  Cost of atomics (and thread_locals) about 5% of
streaming time (mitigated by C++11 being 2% faster).

3

root.cern.ch

Removal of unnecessary serialization

•  Update TClassRef
–  From a linked list of ref per TClass object update at each

creation/deletion of TClassRef
–  To a single pointer to TClass* per TClass object shared by the

TClassRef
•  TClass* is allocated once per TClass and never changes

•  TClass::GetClass
–  Move code around to reduce length the lock is held.

•  TClass::Get/FindStreamerInfo
–  Remove use of lock in the common case by caching in an atomic

the most recently found for each Tclass
•  TThread::Self

–  Remove linear search doing string comparison by using thread
local storage.

•  Remove locks in TBaseClass by caching information.

4

root.cern.ch

Test Machine

•  Cpu: Intel Xeon X5570 @ 2.93GHz
–  2 CPUs for 8 cores (16 including hyperthreading).
– Cache size: 8192 KB

•  12GB of DDR3 at 1333 MHz

5

root.cern.ch

CMS Event

•  CMS Event file 133MB, 100 entries.
•  One TFile and TTree per thread.
•  Use TTreeCache and slightly modified MakeProject lib.
•  Less than 5% serialization

6

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8

Strong Scaling
Weak Scaling

root.cern.ch

Test Description

•  226 distincts CMS condition database objects
•  233MB of data

•  Run example with no thread enabled then 1 through 8
threads.

•  Load the data (amount varies) into 1 TBufferFile per
thread.
– Small Set: first 3 objects for 393KB.

•  Each thread deserialize the content multiple times

7

root.cern.ch

CMS Condition Database

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

d
U

p

Number of Threads

Random

Ordered

memcpy

Small Set

Small set memcpy

8

root.cern.ch

Data Bandwidth

0.5

1

2

4

8

16

32

64

1 2 3 4 5 6 7 8

To
ta

l D
at

a
P

ro
ce

ss
ed

 in
 G

B
/s

Number of Threads

Random
Ordered
memcpy
Small Set
Small set memcpy

9

root.cern.ch

Data Bandwidth

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

To
ta

l D
at

a
P

ro
ce

ss
ed

 in
 G

B
/s

Number of Threads

Random
Ordered
memcpy
Small Set
Small set memcpy

10

root.cern.ch

Observations

•  Average streaming performance nicely (1 GB/s)
•  But varies a lot

•  Condition database objects very varied.
–  Top 6 objects takes 60% of the time but 15% of the size.
–  This will limit the amount of possible parallelism.

•  For example
–  IdealGeometryRecord / PGeometricDet

•  8MB (3% of total)
•  23557 std::string in an object in a vector
•  Read @ 325 MB/s … 12% of total

–  SiPixelGainCalibrationOffline
•  65MB (28% of total) … Read @ 4680 MB/s … 6% of total

–  L1MuDTPtaLut
•  448Kb (0.2% of total) ... Slowest read @ 25 MB/s … 8% of total …
•  Contains a vector<map<short,short> >.

11

root.cern.ch

Worst case.

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

1 2 3 4 5 6 7 8

Sp
ee

d
up

Number of Threads

C++03 C++11

•  Class L1RPCConfig
–  22% of time, 3% of space

•  Most time consuming object.
•  Contains vector of 93160 objects

–  which contains an array of 6 objects.
–  Each of those contains 2 bytes!

•  High serialization
–  Atomics and lock play a role but not

enough to explain behavior

•  But no clear explanation
–  Maybe try running in Vtune

12

root.cern.ch

Conclusion

•  ROOT I/O is now thread friendly
–  It works!
– Less than 5% serialization on CMS Events TTree.
– Less than 15% serialization on all CMS cond db objects.

•  Some object layout lead to poor performance and poor
scalability.

•  More can be done to optimize
– Reduce number of ‘class/version/checksum’ searches.

•  To reduce the number of atomic and thread local uses.

– Change byte swap order (increase memcpy case)
– Continue refactoring of the I/O internals

•  Increase vectorization, reduce branches, etc.

13

