CMS Preliminary V5=7ToV, L=505 1" NE=8TeV, L=5.26 10"

> [

g2 - Data *1f IHa I
® ok Wz

S 10r

2" Mz

2 8

]

[Jmy=126 Gev

6f
af
ot
0 —.HJ— =
-t BT o= @ v
80 100 120 140 160 180;
m, [GeV]

Philippe CANAL
root.cern.ch

ROOT I/0O Performance
In Multihread Environment

Philippe Canal
Fermilab

Overview

Support for I/0O in multi-thread

environment
« CMS Event
« CMS Condition Database
IR S
SR P s

* Conclusion

Philippe CANAL 2
root.cern.ch

« With be only for C++11 but both in v5 and v6.
— Relies on std::atomics

 In v5, limited to non-interactive sessions
— High deadlock risk when starting the command line.

« Cost of atomics (and thread_locals) about 5% of
streaming time (mitigated by C++11 being 2% faster).

Y

Removal of unnecessary serialization 2

» Update TClassRef

— From a linked list of ref per TClass object update at each
creation/deletion of TClassRet

— To a single pointer to TClass* per TClass object shared by the
TClassRef

« TClass* is allocated once per TClass and never changes

» TClass::GetClass
— Move code around to reduce length the lock is held.

» TClass::Get/FindStreamerInfo

— Remove use of lock in the common case by caching in an atomic
the most recently found for each Tclass

* TThread::Self

— Remove linear search doing string comparison by using thread
local storage.

» Remove locks in TBaseClass by caching information.

root.cern.ch 4

I

v Test Machine

* Cpu: Intel Xeon X5570 @ 2.93GHz
— 2 CPUs for 8 cores (16 including hyperthreading).
— Cache size: 8192 KB

* 12GB of DDR3 at 1333 MHz

* CMS Event

L2

« CMS Event file 133MB, 100 entries.
* One TFile and TTree per thread.

» Use TTreeCache and slightly modified MakeProject lib.
 Less than 5% serialization

7.00

6.00

===Strong Scaling
5.00 Weak Scaling

4.00

3.00 /
2.00 /

1.00

root.cern.ch 6

I

e Test Description

+ 226 distincts CMS condition database objects
- 233MB of data

» Run example with no thread enabled then 1 through 8
threads.

* Load the data (amount varies) into 1 TBufferFile per
thread.

— Small Set: first 3 objects for 393KB.
» Each thread deserialize the content multiple times

CMS Condition Database

8
Random
7 =@~Qrdered
memcpy
6 =>==Small Set
== Small set memcpy
=F
=) 5
g _
o _
o
(=7
X 4
__ P
. >
s
> -
2
1
1 2 3 4 5 6 7 8
Number of Threads

root.cern.ch 8

32
w 10
~~
aa
&)
B
- 8
Q
2}
&N
Q
Q
g
g 4
8
)
-
= 2
s
S
i

1

0.5

root.cern.ch

CED b ar e» cap GED GED GED OCGD GED GED GED oG GE) GED G O

-

Random

=@~QOrdered

memcpy
=>e=Small Set

== Small set memcpy

Number of Threads

I

Data Bandwidth
L 3

, Random
é‘,
30 7 =#~Qrdered
Ve
% 7/ memcpy
Ve

Cé 25 7 =>=Small Set
o / == Small set memcpy
%
g 20
O
=
f
=¥
-
E
o 10
=

5

0O T T T T T T T |

1 2 3 4 5 6 7 8
Number of Threads

root.cern.ch 1 O

I

v Observations

« Average streaming performance nicely (1 GB/s)
» But varies a lot

- Condition database objects very varied.
— Top 6 objects takes 60% of the time but 15% of the size.

— This will limit the amount of possible parallelism.

* For example

— IdealGeometryRecord / PGeometricDet
« 8MB (3% of total)

« 23557 std::string in an object in a vector
« Read @ 325 MB/s ... 12% of total

— SiPixelGainCalibrationOffline
* 65MB (28% of total) ... Read @ 4680 MB/s ... 6% of total

— LiMuDTPtaLut

* 448Kb (0.2% of total) ... Slowest read @ 25 MB/s ... 8% of total ...
 Contains a vector<map<short,short> >.

root.cern.ch 11

I

‘F Worst case.

 Class L1IRPCConfig High serialization

— 22% of time, 3% of space — Atomics and lock play a role but not
enough to explain behavior

* Most time consuming object.

. Contains vector of 93160 objects ~ ~ But no clear explanation

— which contains an array of 6 objects. — Maybe try running in Vtune

— Each of those contains 2 bytes!

2.20
“=C++03 “~C++11

2.00

1.80

1.60

1.40 \
1.20 e \
1.00 \/D

0.80

Speed up

0.60

Number of Threads

root.cern.ch 1 2

I

Conclusion
L' 3

* ROOT I/0 is now thread friendly

— It works!

— Less than 5% serialization on CMS Events TTree.
— Less than 15% serialization on all CMS cond db objects.

» Some object layout lead to poor performance and poor
scalability.

* More can be done to optimize

— Reduce number of ‘class/version/checksum’ searches.
* To reduce the number of atomic and thread local uses.

— Change byte swap order (increase memcpy case)

— Continue refactoring of the I1/0 internals
 Increase vectorization, reduce branches, etc.

