RaDIATE: Graphite Status Report

Kavin Ammigan¹, Nikolaos Simos², Frederique Pellemoine³

¹ Fermi National Accelerator Laboratory Batavia, IL 60510, USA

² Brookhaven National Laboratory Upton, NY 11973, USA

Michigan State University, FRIB East Lansing, MI 48824, USA

RaDIATE Collaboration Meeting 19 May 2014

BNL BLIP irradiation experiment

- Proton energy ~ 180 MeV
- Irradiation performed in tandem with isotope production
- 9 weeks of irradiation of various graphite grade and C/C composite specimens
- PIE at BLIP target processing laboratory

Irradiated graphite grades

Graphite grades

- POCO
- IG-430
- SGL R7650
- C2020
- 3D C/C composite

Irradiation parameters

- ullet Proton energy \sim 180 MeV
- ullet $\sigma_x \sim$ 10 mm, $\sigma_y \sim$ 7 mm
- Peak DPA ~ 0.1
- Peak temperature ~ 200 °C

Irradiated graphite grades

Graphite grades

- POCO
- IG-430
- SGL R7650
- C2020
- 3D C/C composite

Irradiation parameters

- Proton energy ~ 180 MeV
- $\sigma_x \sim$ 10 mm, $\sigma_y \sim$ 7 mm
- Peak DPA ~ 0.1
- \bullet Peak temperature \sim 200 $^{\circ}$ C

PIE equipment

Tensile tester and specimen fixture

3/4 point flexural test fixture

Ultrasonic system

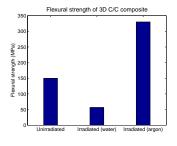
Dilatometer and high temperature furnace

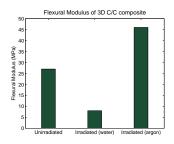
PIE status and recent results

- ✓ Tensile and thermal tests already performed on various graphite grades¹
- ✓ Additional testing:
 - Mechanical (flexural) tests on 3D C/C specimens
 - Electrical resistivity measurements to evaluate thermal conductivity

¹LBNE target material radiation damage from energetic protons of the Brookhaven Linear Isotope Production (BLIP) facility, http://www-radiate.fnal.gov/downloads.html

Initial 3D C/C flexural test results


- ✓ Un-irradiated specimens
 - Consistent failure at the middle of the gage with 3 point bending
 - Flexural strength dependent on number of longitudinal fibers along specimen gage


✓ Irradiated specimens

Specimens irradiated in both water and argon environment

□ 0.05 DPA

 \sim 4 fibers along gage

More specimen tests to compare for DPA effects

EDXRD experiment at NSLS

Objective:

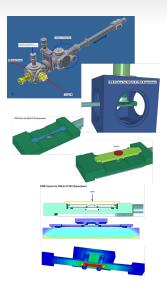
EDXRD studies of irradiated novel materials and composites under consideration in next generation fusion/fission reactors and high-power accelerators

Irradiated array of materials relevant to LBNE and RaDIATE:

Graphite: POCO, IG-430, SGL R7650

Carbon composite: 3D C/C, 2D C/C

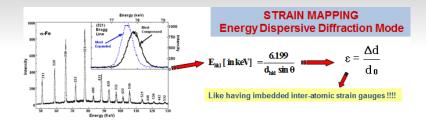
Other: Ti-6Al-4V

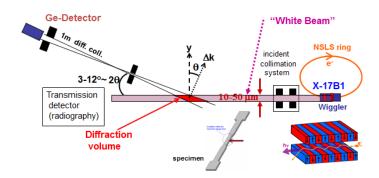

Experiment performed:

April 29 - May 6

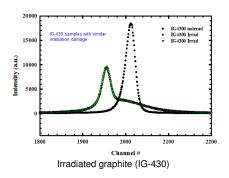
Other potentially relevant materials:

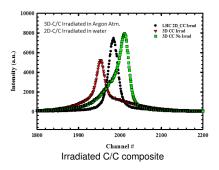
Gum metal, Super Invar, Tungsten

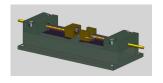

EDXRD experimental stage

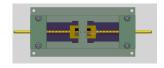


Multi-functional stage capable of handling real size irradiated specimens, under vacuum, four point bending state of stress and eventually heating/annealing via a portable, collimated laser beam



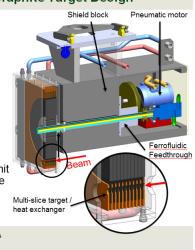

Experimental stage at X17B1 beamline at NSLS


Preliminary results



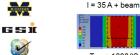
Future tests

- Further flexural tests on 3D C/C composite
- Thermal conductivity measurements

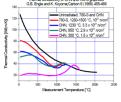


- Next EDXRD experimental window (summer 2014)
 - Monochromatic high energy X-rays
 - Laser induced annealing of specimens

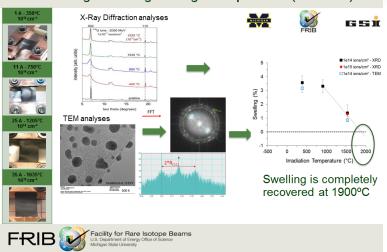
FRIB Production Target Rotating Multi-slice Graphite Target Design


- Rotating multi-slice graphite target chosen for FRIB baseline
 - · Multiple rotating target slices
 - · Thermal radiation cooling
- Target requirements
 - Up to 100 kW power deposition in 1 mm diameter beam spot
 - Target lifetime 2 weeks to meet experimental program requirements
- Target parameters defined by thermo-mechanical simulations
 - 5000 RPM and 30 cm diameter to limit maximum temperature and amplitude of temperature changes
 - » High temperature: ~ 1900°C
 - Evaporation of graphite mitigated

Radiation Damage Studies in Graphite

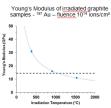

- - Thermo-mechanical properties (thermal conductivity, tensile and flexural strength)
 - · Electronic properties (Resistivity)
 - Structural properties (microstructure and dimensional changes, Swelling)
- Most of the studies were done with neutron and proton irradiation but not a lot of data for heavy ion beams
- How much will annealing help?
- Two type of polycrystalline graphite (5 and 13 µm grain size) irradiated with Au-beam 8.6 MeV/u
 - Up to 5.6·10¹⁰ cm⁻².s⁻¹, Fluence up to 10¹⁵ cm⁻²
 - · Samples heated to different temperature

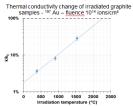
Thermal conductivity of CHN and 780-S graphites

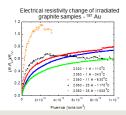


Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science

Radiation Damage Studies in Graphite Annealing of Damage at High Temperature (> 1300°C)


Radiation Damage Studies in Graphite Annealing of Damage at High Temperature (> 1300°C)


 Additional analyses (Young's modulus, thermal diffusivity, lattice parameter, electrical resistance) of irradiated samples all confirm annealing at high temperature



GSI

- Results of material property changes were used as input in thermo-mechanical studies
 - Swelling is completely recovered at 1900°C
 - 30% of thermal conductivity value will be recovered but lead to insignificant change in average temperature of the production target. Main heat transfer in target is thermal radiation at high temperature
 - · Electrical resistivity change has no impact on thermo-mechanical behavior
 - Decrease of CTE (coefficient of thermal expansion) has no impact on thermo-mechanical behavior
- Annealing promises sufficient lifetime for FRIB beam production targets

Future plans

- New irradiation runs to achieve higher DPA and gas production
- PIE of old/failed graphite targets 2, e.g. NuMI target fins
- Challenges
 - Irradiation cost and time
 - ➡ Irradiation facilities: BLIP, FETS?

² Irradiated Materials Table, http://www-radiate.fnal.gov/downloads.html

Future plans

- New irradiation runs to achieve higher DPA and gas production
- PIE of old/failed graphite targets ², e.g. NuMI target fins

Challenges

- Irradiation cost and time
- ➡ Irradiation facilities: BLIP, FETS?

² Irradiated Materials Table, http://www-radiate.fnal.gov/downloads.html

Future plans

- New irradiation runs to achieve higher DPA and gas production
- PIE of old/failed graphite targets ², e.g. NuMI target fins
- Challenges
 - Irradiation cost and time
 - ➡ Irradiation facilities: BLIP, FETS?

 $^{{\}rm 2}_{Irradiated\ Materials\ Table,\ http://www-radiate.fnal.gov/downloads.html}$