

PHYSICS ATTHE COSMIC FRONTIER WITH THE DARK ENERGY SURVEY AND BEYOND

Marcelle Soares-Santos Fermilab

DARK ENERGY & ACCELERATED EXPANSION

COSMIC SURVEYS

BASIC OBSERVABLES

correct for distortions

Fluxes (counts/pix/sec)

calibrate from instrumental units to physical units

get colors from different filters and compute photometric redshifts

Shapes (ellipticity, size)

correct for distortions

DARK ENERGY SURVEY

DECam

3 sq deg FOV, 570 Mpix optical CCD camera

Facility instrument at CTIO Blanco 4-m telescope in Chile

First light: Sep 2012

Survey

5000 sq deg grizY to 24th mag 0.9 arcseconds seeing overlapping with SPT, VISTA

30 sq deg SNe survey

525 nights: 2013-2018

DECAM

CCD focal plane is housed in a vacuum vessel (**the imager**)

Hexapod provides focus and lateral alignment capability for the corrector-imager system

Barrel supports the 5 lenses and imager

CCD readout electronic crates are actively cooled to eliminate thermal plumes

Filter changer with 8 filter capacity and **shutter** fit between lenses **C3** and **C4**

LN2 is pumped from the telescope floor to a heat exchanger in the imager: cools the CCDs to -100 C

DECAMTELESCOPE SIMULATOR AT FERMILAB

Platform for testing

DECam operations and installation procedures prior to shipping to Chile.

Full system tests, including a mock observing run.

Imager with CCDs, filter changer, shutter, hexapod, LN2 cooling, CCD readout crates.

From
Dec 2011
to
Jan 2012

We checked out the imager at CTIO!

DECAM IN CHILE

From
February
to
September '12

We installed DECam on the Blanco Telescope

DECAM IN CHILE

From
February
to
September '12

We installed DECam on the Blanco Telescope

DECAM IN CHILE

From
February
to
September '12

We installed DECam on the Blanco Telescope

FIRST LIGHT IMAGES

FIRST LIGHT IMAGES

FIRST LIGHT IMAGES

DES SCIENCE: CLUSTER

DES sample: up to z ~ I

Number of clusters above $10^{14.5}$ solar masses as a function of z, for a 4000 sq-deg survey in 3 different cosmologies.

CLUSTER SAMPLES

CLUSTER FINDER

VT cluster finder in 2+1D

VT CLUSTERS

CLUSTER PHOTO-Z

CLUSTERS LENSING

MASS CALIBRATION

(Very Preliminary)
Mass-Richness calibration

HUBBLE DIAGRAM

We know how to measure
Cosmology from a
Hubble diagram like this
using Type la Supernovae
as standard candles.

Can we do the same with a different "standard" quantity?

NEW INITIATIVE: GRAVITATIONAL WAVES

Coordinated detection of electromagnetic and gravitational radiation from mergers of compact objects (neutron stars, black holes).

• Search for optical counterpart of events detected by the advanced LIGO/VIRGO detectors

Time of flight experiment: Do gravitons travel at the speed of light? Standard Sirens: Potentially a new cosmological probe in the future

ELECTROMAGNETIC & GRAVITATIONAL RADIATION

THE GW PROGRAM

time stamp sky region distance

DES search system

build template image schedule observations take new images perform image subtraction detect, model counterpart

- Near term goal: background rate studies, preparations for a 'pilot search' in 2016-17 and 2017-18
- Long term goal: a large scale program beyond DES
 - DECam still available after the DES 5-year run
 - LSST to start in ~2022, faster than DECam
 - Synergy with future neutrino experiments ToF experiment including neutrinos?

SUMMARY

It was a pleasure and a privilege to help build the DECam and make DES a success.

DES has completed its 1st season, after a productive science verification phase.

In this talk I described two analyses with DES and beyond:

- Voronoi Tessellation cluster analysis
- New initiative: GW program

DES image of the Bullet Cluster arXiv:1405.4285

BACKUP

EVENT RATE

CLUSTER MASS FUNCTION

By applying the VT cluster finder on mock catalogs, we can measure the selection function for our cluster catalog.

We apply that selection function back to the cluster number counts to obtain the mass function.

