The NOvA Experiment

Peter Shanahan – Fermilab Fermilab Users' Meeting June 12, 2014

The Current Questions

- The last 15 years have seen tremendous progress
 - $sin^2(2\theta_{23})$, Δm^2_{ATM} , $sin^2(\theta_{12})$, Δm^2_{21} , $sin^2(2\theta_{13})$ now well measured
- Unanswered questions include
 - Leptonic CP violation: $sin(\delta_{CP}) \neq 0$? ^v₃
 - Mass Hierarchy:

 $m_3 > m_2, m_1 \text{ or } m_3 < m_2, m_1?$

- θ_{23} : Maximal? $\theta_{23} = 45^{\circ}$
- θ_{23} octant: if not maximal, is $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$ (v_3 more v_{τ} or more v_{μ})?

– Is the 3 neutrino mixing model a complete description?

NOvA

- NuMI Off-Axis v_e Appearance experiment
- Study v_e and \overline{v}_e appearance to address open questions
 - − Rich phenomenology of $P(\nu_{\mu} \rightarrow \nu_{e})$, $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ over longbaseline in matter
- Study v_{μ} disappearance
- Requirements
 - Excellent v_e identification and background rejection
 - Optimal matter effect for mass hierarchy (MH)
 - Maximal statistics
- Design
 - High-Power, Narrow-band Beam, with ν and $\overline{\nu}$ modes
 - Huge, Low-Z, totally active, tracking calorimeter Detector

NOvA Detector Technology

Cell structure of reflective PVC extrusions Filled with Liquid Scintillator

10.0		-	-	-	1
	-			-	
1000				-	
	-	•••	-		
		•	-		
		-	-		

Each cell read out via wavelength-shifting fiber to 1 pixel of 32channel Avalanche Photo Diode

- 0.15 X₀ per plane – excellent EM shower characterization

Normal incidence MIP deposits ~13
MeV per cell

 - 30 photoelectrons for MIP farthest from readout achieves desired Signal/ Noise of 10:1

Event Topologies

- Neutrinos at the Main Injector
- Beam spectrum tunable by horn currents, relative placement of target and horns
 - ν or $\overline{\nu}$ predominant beam depending on horn current polarity
- 10 µs beam spill

- Pre-NOvA Era
 - Served MINOS, MINERvA, ArgoNEUT
 - 320 kW beam power in 2.2 sec cycle
 - Typically ran in Low Energy configuration

- 700 kW power to NuMI using existing accelerator complex
- Reduce cycle time from 2.2 to 1.33 seconds
 - Perform slip-stacking in the Recycler prior to injection to Main Injector
 - Additional MI RF stations
- Increased intensity per cycle
 - E.g, new injection kicker to permit 12 Booster batches (up from 11)
- NuMI upgrades for intensity:
 - Medium Energy Beam Configuration
 - New production target, horn 1
- Also: PIP (1), including refurbished Booster RF Cavities for 15 Hz

Location

- 14 mrad (11km) off the NuMI beam axis
 - Pion 2-body decay kinematics

$$E_{\nu} = \frac{0.43E_{\pi}}{1 + \gamma^2 \theta^2},$$

- Neutrino spectrum peaks around 1st oscillation maximum
- High energy tail suppressed: reduces Neutral Current π^0 background
- As far as possible from Fermilab for maximum matter effect/Mass Hierarchy

Far Detector Assembly

32-plane "Blocks" assembled horizontally on Pivoter

Pivoter rolls block into position

Scintillator filled in situ

- September 2012 April 2014
- Along the way, the we needed \sim
 - 2.6 million gallons scintillator: mineral oil, 0.15 M gallons pseudocumene, etc.
 - 12,600 km wavelength shifting fiber
 - 21,500 PVC extrusions of 16 cells each
- 11,000 APDs
- 112 tons of Glue

Far Detector Assembled

Each small box holds a 32channel APD, Front End Board

Data Taking

Data taking simultaneous with assembling and commissioning new blocks

NOvA Data

Cosmic Muon Track

1st Neutrino Candidate

With Reconstruction

P. Shanahan

Fermilab Users' Meeting - June 12, 2014

P. Shanahan

Neutrino Candidate Events NOvA Preliminary

Cosmic Ray Data

Scaled to nominal yearly beam-on exposure of 120 seconds

Good agreement between Data and Monte Carlo Simulations

Event ID – ANN based on most energetic shower +1 = electron-like

Anticipated v_e Yields

Nominal Design Year:

6x10²⁰ Protons-on-Target, 14 kT detector

NOvA Reach

• v_e Appearance

- >95% CL determination of Mass Hierarchy over 1/3 of the range of δ
- >95% CL determination of θ_{23} octant for all δ for $sin^2(2\theta_{23})=0.95$
- New constraints on allowed range of δ
- v_{μ} Disappearance
 - Measure $sin^2(2\theta_{23})$ to ~2% at maximal mixing
- Non-v/non-oscillation physics

Not Just v, Oscillation Physics

- Large, sensitive, finely-segmented detector
 - Supernova neutrinos, Magnetic monopoles ...
 - Use Data-driven trigger to select High Energy/High Multiplicity signatures, etc

P. Shanahan

Near Detector

Conclusions

- 10 years after proposal, NOvA is taking data!
- Far Detector and Near Detectors have been assembled
 - Both detectors see NuMI neutrinos
- Cosmic Ray simulations benchmarked to data
 40,000,000 : 1 cosmic ray rejection achieved
- Benchmarking neutrino channels will begin with Near Detector Data
- Expect 1^{st} Oscillation Results ~ year's end

Neutrino Mass Mixing

- Neutrino Flavor Oscillations arise from mixing
 - Flavor eigenstates are mixtures of mass eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

"Atmospheric"/
Long-baseline \mathbf{v}_{μ} disappearance Phase δ not yet measured "Solar" \mathbf{v}_{e} disappearance

Oscillation probability, in the limit of 2 flavors α and β , mixed by angle θ , mass-squared difference Δm^2 :

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta) \sin^2(\frac{\Delta M^2 L}{4E})$$

Neutrino energy E Baseline L

P. Shanahan

	Simulation					Data	
Cut	Un-Osc. ν_{μ}	Osc. ν_{μ}	NC Bkg	Osc. ν_e	Beam ν_e	Cosmic Bkg	Total Bkg
All Events	669	127	380	37	10	$19\mathrm{M}$	19M
Cosmic Veto	660	125	273	36	10.0	$6\mathrm{M}$	$6\mathrm{M}$
Containment	582	109	195	28	7.5	120k	120k
ν_{μ} CC ID	460	86	5	0.4	0.2	44k	44k
Cosmic Reject	398	75	4	0.3	0.1	1	5.4

Nominal NOvA Year: 6x1020 POT, 14 kT Detector

 v_{μ} disappearance

Data

	$\longleftarrow Simulations \longrightarrow \qquad \downarrow$						
	Osc. v _e CC	ν _μ CC	NC	Beam v _e CC	Cosmic	All bkg	
No cut	36.7	557.3	379.6	28.1	1.9e+07	1.9e+07	
Presel+fid	24.7	30.0	83.5	2.9	56407.3	56523.7	
Gap<150 cm	24.6	29.6	81.8	2.9	55055.1	55169.5	
$P^{T}/P < 0.6$	22.0	24.3	59.6	2.6	1247.5	1334.0	
Max Y < 700 cm	21.2	23.0	57.4	2.5	834.1	917.0	
EID>0.7	13.9	0.7	3.9	1.5	0.5(2)	6.5	
Eff.	37.8%	0.1%	1.0%	5.2%	2.4e-08	3.4e-07	
LEM>0.37	14.0	1.1	3.5	1.5	0.9(4)	7.0	
Eff.	38.1%	0.2%	0.9%	5.2%	4.8e-08	3.6e-07	

Nominal NOvA Year: 6x1020 POT, 14 kT Detector

Some History

- Formal NOvA Proposal: 2004
- NOvA Project: CD-1: 2006, CD-2: 2008
- Far Detector Building construction: 7/2009-7/2011
- Far Detector assembly and filling: 9/2012 4/2014
- APDs and commissioning: 2/2013 8/2014

