MINOS/MINERvA surface building

SBN FD (~600m)

Pinest

MiniBooNE

MicroBooNE (470m)

Booster Neutrino Beam

> **Future Short-Baseline Neutrino Experiments**

amilebunac

47th Annual Fermilab Users Meeting June 11-12, 2014 - Fermilab

David Schmitz

THE UNIVERSITY OF CHICAGO

THE UNIVERSITY OF CHICAGO THE ENRICO FERMI INSTITUTE

BNB target hall

SBN ND (~100m)

Outline

- Why a Short-Baseline Neutrino (SBN) Program at Fermilab
- A little history: recent proposals to expand the SBN program, address anomalies, and search for sterile neutrinos
- The plan moving forward to build a world-leading accelerator-based short-baseline neutrino oscillation program on the FNAL Booster Neutrino Beam

D. Schmitz (EFI, UChicago)

BNB Short-Baseline Neutrino Program

Fermilab makes an ideal host for a next generation short-baseline neutrino oscillation experimental program

- SBN Program <u>builds upon existing</u> capabilities and infrastructure, such as the Booster Neutrino Beam (BNB)
 - The NuMI Beam is deep and aimed down toward Minnesota, but the BNB is shallow (~10 m detector hall depth at all baselines)
 - BNB neutrino fluxes are well understood due to dedicated hadron production data (the HARP experiment @ CERN) and 10+ years of study by MiniBooNE and SciBooNE

D. Schmitz (EFI, UChicago)

Synergy with the Long-Baseline Program

- SBN Program has <u>important synergies</u> with on-going lab efforts and the future long-baseline neutrino program
 - Continued development of the Liquid Argon TPC technology for neutrino physics. SBN experiments offer a great opportunity for use of mid-scale detectors which will see large neutrino exposures.
 - LArTPC technology development and prototyping
 - Development and validation of LArTPC event reconstruction with large v_{μ} and v_{e} data sets
 - Measure important v-Ar cross sections in GeV energy range
 - Demonstrate sensitive v_µ→v_e appearance and disappearance oscillation measurements with LAr detectors

D. Schmitz (EFI, UChicago)

Expands the Laboratory's Science Program

- SBN Program <u>expands the science reach</u> of the world-class neutrino physics program here at Fermilab
 - While each of these measurements alone lack the significance to claim a discovery, together they could be hinting at important new physics

Experiment	Type	Channel	Significance
LSND	DAR	$\bar{\nu}_{\mu} \to \bar{\nu}_e \ \mathrm{CC}$	3.8σ
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \ \mathrm{CC}$	3.4σ
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \to \bar{\nu}_e \ \mathrm{CC}$	2.8σ
GALLEX/SAGE	Source - e capture	ν_e disappearance	2.8σ
Reactors	Beta-decay	$\bar{\nu}_e$ disappearance	3.0σ

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

One thing is certain...

The discovery of a light sterile neutrino would be monumental for particle physics as well as cosmology

D. Schmitz (EFI, UChicago)

Accelerator-Based Anomalies

P5 Report Recommendations

Recommendation 12: In collaboration with international partners, develop a coherent short- and long-baseline neutrino program hosted at Fermilab.

Project/Activity	Scenario A	Scenario B	Scenario C	ν		
Short Baseline Neutrino Portfolio	Y	Υ	Y	~		Ι

Recommendation 15: Select and perform in the short term a set of small-scale short-baseline experiments that can <u>conclusively address experimental hints</u> of physics beyond the three-neutrino paradigm. Some of these experiments <u>should use liquid argon to advance the technology and build</u> <u>the international community</u> for LBNF at Fermilab.

π Decay-In-Flight Experiments

- DIF beam provides a rich oscillations program with a single facility:
 - $\bullet \quad \nu_{\mu} \rightarrow \nu_{e} \text{ appearance }$
 - $\bullet \quad \nu_{\mu} \text{ and } \nu_{e} \text{ disappearance}$
 - o both neutrinos and antineutrinos possible
 - CC and NC interactions
- Anomalies exist here (MiniBooNE neutrino and antineutrino) and these need to be addressed
- However:
 - Need detectors that can <u>distinguish electrons from photons</u> in order to reduce key backgrounds
 - <u>Multiple detectors</u> at different baseline are key for reducing systematic uncertainties

D. Schmitz (EFI, UChicago)

Electron/Photon Separation with LArTPCs

MicroBooNE

The first phase of the next generation SBN Program begins soon with MicroBooNE coming online later this year!

MicroBooNE and the MiniBooNE Excess

- MicroBooNE was not designed to explore the complete sterile neutrino oscillation parameter space on its own
- Summer 2012, an LOI was submitted to the Fermilab PAC for the "LAr1" project. This was a 1-kton FV LArTPC, based on designs for LBNE, to serve as a second detector along with MicroBooNE. Estimated cost was \$80M.

- MicroBooNE was not designed to explore the complete sterile neutrino oscillation parameter space on its own
- Summer 2012, an LOI was submitted to the Fermilab PAC for the "LAr1" project. This was a 1-kton FV LArTPC, based on designs for LBNE, to serve as a second detector along with MicroBooNE. Estimated cost was \$80M.
- Fast forward to the January 2014 PAC where two new proposals were put forward:

- MicroBooNE was not designed to explore the complete sterile neutrino oscillation parameter space on its own
- Summer 2012, an LOI was submitted to the Fermilab PAC for the "LAr1" project. This was a 1-kton FV LArTPC, based on designs for LBNE, to serve as a second detector along with MicroBooNE. Estimated cost was \$80M.
- Fast forward to the January 2014 PAC where two new proposals were put forward:
 - P-1053: LAr1-ND http://www.fnal.gov/directorate/program_planning/Jan2014PACPublic/LAr1ND_Proposal.pdf
 - Realizing the importance of a near detector to measure the unoscillated fluxes and the physics program enabled in a first phase with a ND + MicroBooNE, LAr1-ND was proposed as the next phase in the SBN program.

- MicroBooNE was not designed to explore the complete sterile neutrino oscillation parameter space on its own
- Summer 2012, an LOI was submitted to the Fermilab PAC for the "LAr1" project. This was a 1-kton FV LArTPC, based on designs for LBNE, to serve as a second detector along with MicroBooNE. Estimated cost was \$80M.
- Fast forward to the January 2014 PAC where two new proposals were put forward:
 - P-1053: LAr1-ND http://www.fnal.gov/directorate/program_planning/Jan2014PACPublic/LAr1ND_Proposal.pdf
 - Realizing the importance of a near detector to measure the unoscillated fluxes and the physics program enabled in a first phase with a ND + MicroBooNE, LAr1-ND was proposed as the next phase in the SBN program.
 - P-1052: ICARUS@FNAL http://www.fnal.gov/directorate/program_planning/Jan2014PACPublic/ICARUS.pdf
 - Was proposed to relocate the updated existing ICARUS T600 LArTPC detector (~450-ton FV) to the BNB and to construct a new one-fourth scale detector based on the same design to serve as a near detector for oscillation searches.

ICARUS@FNAL Proposal

- ICARUS T600 detector to be located along the BNB at ~700 m from the target
- A new T150 detector based on the ICARUS design to be located at about 150±50 m from the target
- T600 would also receive v's from the off-axis NuMI neutrino beam peaked at ~2 GeV with an enriched ve flux
- The dual presence of T600 and new T150 would extend the information coming from MicroBooNE

http://www.fnal.gov/directorate/program_planning/ Jan2014PACPublic/PAC_presentation.jan2014.F.pptx

LAr1-ND Proposal

BNB

- LAr1-ND detector design approach:
 - utilize as many design elements developed for the LBNE Far Detector as feasible
 - implement technology that builds upon experience from the T600, MicroBooNE and the 35-ton membrane cryostat prototype
 - control project cost by reusing the empty SciBooNE detector hall at 100 m on the BNB
- LAr-ND would provide high-statistics measurement of the intrinsic BNB content, enabling sensitive oscillation searches in combination with downstream detectors
- Together with MicroBooNE, provide a complete interpretation of the MiniBooNE excess. Photons or electrons? Intrinsic to the beam or appearing?
- Valuable "physics R&D" such as reconstruction development and GeV ν-Ar cross sections.
 ~1M ν_μ events per year, 6,000 ν_e per year!

82 ton TPC membrane cryostat design

SBN Program Development

- Since the January PAC, proponents of the LAr1-ND and ICARUS proposals, members of the MicroBooNE collaboration, as well as representatives from Fermilab, INFN and CERN, have been working together to develop plans for a coherent SBN program on the BNB.
 - An international team* is currently leading the preparation of a joint proposal to be submitted to the PAC for their next meeting in July.
 - This proposal will include physics sensitivities for a multi-LArTPC detector program with a LAr1-ND type near detector at 100-150m, MicroBooNE at 470m, and the ICARUS T600 detector at 600m along the BNB.
 - Three day workshop at FNAL in April with several members from each group
 - Workshop included also the NESSIE collaboration who have proposed a muon spectrometer-based addition to the SBN experimental program at FNAL (arXiv:1404.2521)

*A. Guglielmi (INFN Padova/ICARUS), M. Nessi (CERN), D. Schmitz (Chicago/LAr1-ND), G. Zeller (FNAL/MicroBooNE), and FNAL SBN Coordinator P. Wilson (FNAL SBN)

SBN Program Optimization

- Feeding into the proposal are the on-going efforts of Working Groups with broad participation among the institutions and collaborations. Their charges are to address specific, key questions relating to the <u>optimization</u> of the experimental configuration.
 - 1. Cosmic backgrounds
 - Impact of cosmic muons, neutrons and photons for surface detectors
 - 2. Neutrino Flux and Systematics
 - Optimization of ND location, FD on-axis vs on surface
 - 3. Detector Buildings and Siting
 - Cost and scheduling

4. Cryostat and Cryogenic Systems

D. Schmitz (EFI, UChicago)

Sterile Neutrino Oscillations on the BNB

ND @ 100 m

MicroBooNE @ 470 m

ICARUS T600 @ 600 m

$v_{\mu} \rightarrow v_{e}$ Appearance

D. Schmitz (EFI, UChicago)

$v_{\mu} \rightarrow v_{e}$ Appearance

D. Schmitz (EFI, UChicago)

Make Every Proton Count

- Beamline was optimized for MiniBooNE in 1990s
 - Neutrino detector technology matters (S/B is the metric)
 - Available hadron production data (from HARP expt.) means pion production off the target now better understood. Re-optimize focusing?

D. Schmitz (EFI, UChicago)

v_{μ} Disappearance

 v_{μ} disappearance not a statistics limited search. Here shown with a 4% systematic uncertainty on the near to far extrapolation.

Previous limit at high Δm² limited by near and far detectors being different technologies

Summary

- Fermilab is well positioned to play a key role in resolving the existing hints for new physics happening at short-baseline
- A discovery would be revolutionary
- A short-baseline program additionally provides opportunities for important physics measurements and detector R&D toward the future neutrino program
- Such a program has been strongly endorsed by the recent P5 Report
- An international group is currently developing a proposal to build a world-leading program here at Fermilab, utilizing the existing BNB. An optimization of this program, integrating recent proposals by the ICARUS and LAr1-ND collaborations, is under development for the summer PAC next month.

LAr1-ND Collaboration

C. Adams¹, C. Andreopoulos², J. Asaadi³, B. Baller⁴, M. Bishai⁵, L. Bugel⁶, L. Camilleri⁷,
F. Cavanna¹, H. Chen⁵, E. Church¹, D. Cianci⁸, G. Collin⁶, J.M. Conrad⁶, G. De Geronimo⁵,
A. Ereditato⁹, J. Evans¹⁰, B. Fleming⁻¹, W.M. Foreman⁸, G. Garvey¹¹, R. Guenette¹², J. Ho⁸,
C.M. Ignarra⁶, C. James⁴, C.M. Jen¹³, B.J.P. Jones⁶, L.M. Kalousis¹³, G. Karagiorgi⁷,
W. Ketchum¹¹, I. Kreslo⁹, V.A. Kudryavtsev¹⁴, D. Lissauer⁵, W.C. Louis¹¹, C. Mariani¹³,
K. Mavrokoridis², N. McCauley², G.B. Mills¹¹, Z. Moss⁶, S. Mufson¹⁵, M. Nessi¹⁶,
O. Palamara^{*1}, Z. Pavlovic¹¹, X. Qian⁵, L. Qiuguang¹¹, V. Radeka⁵, R. Rameika⁴,
C. Rudolf von Rohr⁹, D.W. Schmitz^{*8}, M. Shaevitz⁷, M. Soderberg³, S. Söldner-Rembold¹⁰,
J. Spitz⁶, N. Spooner¹⁴, T. Strauss⁹, A.M. Szelc¹, C.E. Taylor¹¹, K. Terao⁷, L. Thompson¹⁴,
M. Thomson¹⁷, C. Thorn⁵, M. Toups⁶, C. Touramanis², R.G. Van De Water¹¹, M. Weber⁹,
D. Whittington¹⁵, B. Yu⁵, G. Zeller⁴, and J. Zennamo⁸

¹Yale University, New Haven, CT ² University of Liverpool, Liverpool, UK ³Syracuse University, Syracuse, NY ⁴Fermi National Accelerator Laboratory, Batavia, IL ⁵Brookhaven National Laboratory, Upton, NY ⁶Massachusetts Institute of Technology, Boston, MA ⁷Columbia University, Nevis Labs, Irvington, NY ⁸University of Chicago, Enrico Fermi Institute, Chicago, IL ⁹University of Bern, Laboratory for High Energy Physics, Bern, Switzerland ¹⁰ University of Manchester, Manchester, UK ¹¹Los Alamos National Laboratory, Los Alamos, NM ¹²University of Oxford, Oxford, UK ¹³Center for Neutrino Physics, Virginia Tech, Blacksburg, VA ¹⁴University of Sheffield, Sheffield, UK ¹⁵Indiana University, Bloomington, IN ¹⁶CERN, Geneva, Switzerland ¹⁷University of Cambridge, Cambridge, UK

10 US institutions

- → 3 DOE National Laboratories
- 6 NSF institutions

7 European institutions

- 5 UK institutions
- I Swiss institution
- ► CERN

11 institutions also on MicroBooNE. Most also LBNE collaborators.

*Spokespersons

MicroBooNE Collaboration

MicroBooNE Collaboration + Project Team

Brookhaven: M. Bishai, H. Chen, K	K. Chen, S. Duffin, J. Farrell, F. Lanni, Y. Li, D. Lissauer, G. Mał	nler, D. Makowiecki, J. Mead,			
X. Qian, V.	Radeka, S. Rescia, A. Ruga, J. Sondericker, C. Thorn, B. Yu, C.	Zhang			
L	niversity of Cambridge: A. Blake, J. Marshall, M. Thomson				
Univ	versity of Chicago: W. Foreman, J. Ho, D. Schmitz, J. Zennamo				
Univers	sity of Cincinnati: R. Grosso, J. St. John, R. Johnson, B. Littlejoh	n			
Columbia University: N. Bishop, L. Camilleri, D. Caratelli, C. Chi, V. Genty, G. Karagiorgi, D. Kaleko, B. Seligman,					
	M. Shaevitz, B. Sippach, K. Terao, B. Willis				
Fermilab: R. Acciarri, L. Bagby, B. I	Baller, D. Bogert, B. Carls, H. Greenlee, C. James, E. James, H.	Jostlein, M. Kirby, S. Lockwitz,			
B. Lundberg, A. Marchionni, S	. Pordes, J. Raaf, <u>G. Rameika</u> ⁺ , B. Rebel, A. Schukraft, S. Wolb	ers, T. Yang, <u>G.P. Zeller</u> *			
Kansas St	ate University: T. Bolton, S. Farooq, S. Gollapinni, G. Horton-Su	mith			
Los Alamos: G. Garvey, J. Gonzales, W. Ketchum, B. Louis, G. Mills, Z. Pavlovic, R. Van de Water, K. Yarritu					
MIT: W. Barletta, L. Bugel, G. C	Collin, J. Conrad, C. Ignarra, B. Jones, J. Moon, M. Moulai, J. Sp	bitz, M. Toups, T. Wongjirad			
	Michigan State University: C. Bromberg, D. Edmunds				
New Mexic	co State University: T. Miceli, V. Papavassiliou, S. Pate, K. Woo	druff			
	Otterbein University: N. Tagg				
total team (collaboration + project):	University of Oxford: G. Barr, M. Bass, R. Guenette				
3 countries	University of Pittsburgh: S. Dytman, D. Naples, V. Paolone	* <u>spokespeople,</u>			
23 institutions	Princeton University: K. McDonald, B. Sands	+ project manager			
134 collaborators (includes project team)	Saint Mary's University of Minnesota: P. Nienaber	<u>project manager</u>			
SL	AC: M. Convery, B. Eberly, M. Graham, D. Muller, Y-T. Tsai				
	Syracuse University: J. Asaadi, J. Esquivel, M. Soderberg				
Unive	rsity of Texas at Austin: S. Cao, J. Huang, K. Lang, R. Mehdiyev	<i>I</i>			
University of Bern, Switzerland	<i>:</i> A. Ereditato, D. Goeldi, I. Kreslo, M. Luethi, C. Rudolf von R	ohr, T. Strauss, M. Weber			
	INFN, Italy: F. Cavanna, O. Palamara (currently at Yale)				
	Virginia Tech: M. Jen, L. Kalousis, C. Mariani				
Yale University: C. Adams, E. Church, <u>B. Fleming</u> *, E. Gramellini, A. Hackenburg, B. Russell, A. Szelc					

ICARUS Collaboration

M. Antonello¹, B. Baibussinov², V. Bellini^{4,5}, H. Bilokon⁶, F. Boffelli⁷, M. Bonesini⁹, E. Calligarich⁸, S. Centro^{2,3}, K. Cieslik¹⁰, D. B. Cline¹¹, A. G. Cocco¹², A. Curioni⁹, A. Dermenev¹³, R. Dolfini^{7,8}, A. Falcone^{7,8}, C. Farnese², A. Fava³, A. Ferrari¹⁴, D. Gibin^{2,3}, S. Gninenko¹³, F. Guber¹³, A. Guglielmi², M. Haranczyk¹⁰, J. Holeczek¹⁵, A. Ivashkin¹³, M. Kirsanov¹³, J. Kisiel¹⁵, I. Kochanek¹⁵, A. Kurepin¹³, J. Łagoda¹⁶, F. Mammoliti⁴, S. Mania¹⁵, G. Mannocchi⁶, V. Matveev¹³, A. Menegolli^{7,8}, G. Meng², G. B. Mills¹⁷, C. Montanari⁸, F. Noto⁴, S. Otwinowski¹¹,
T. J. Palczewski¹⁶, P. Picchi⁶, F. Pietropaolo², P. Płoński¹⁸, R. Potenza^{4,5}, A. Rappoldi⁸, G. L. Raselli⁸, M. Rossella⁸, C. Rubbia^{19,14,a}, P. Sala²⁰, A. Scaramelli²⁰, E. Segreto¹, D. Stefan¹, J. Stepaniak¹⁶, R. Sulej¹⁶, C. M. Sutera⁴, D. Tlisov¹³, M. Torti^{7,8}, R. G. Van de Water¹⁷, F. Varanini³, S. Ventura², C. Vignoli¹, H. G. Wang¹¹, X. Yang¹¹, A. Zani^{7,8}, K. Zaremba¹⁸

INFN, LNGS, Assergi (AQ), Italy¹), INFN, Sezione di Padova, 35131 Padova, Italy²), Dipartimento di Fisica, Università di Padova, 35131 Padova, Italy³). INFN, Sezione di Catania, Catania, Italy⁵), INFN, Laboratori Nazionali di Frascati (LNF), 00044 Frascati (Roma), Italy⁶), Dipartimento di Fisica, Università di Pavia, 27100 Pavia, Italy⁷), INFN, Sezione di Pavia, 27100 Pavia, Italy⁸), INFN, Sezione di Milano Bicocca, Dipartimento di Fisica G. Occhialini, 20126 Milano, Italy⁹), The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Kraków, Poland¹⁰, Department of Physics and Astronomy, University of California, Los Angeles, USA¹¹, INFN, Sezione di Napoli, Dipartimento di Scienze Fisiche, Università Federico II, 80126 Napoli, Italy¹²), INR-RAS, Moscow, Russia¹³), CERN, Geneva, Switzerland¹⁴, Institute of Physics, University of Silesia, Katowice, Poland¹⁵), National Center for Nuclear Research, Warszawa, Poland¹⁶, Los Alamos National Laboratory, New Mexico, USA¹⁷), Institute for Radioelectronics, Warsaw University of Technology, Warsaw, Poland¹⁸), GSSI, L'Aquila (AQ), Italy¹⁹, INFN, Sezione di Milano, 20133 Milano, Italy²⁰)