Neutrinos: Not Just Missing ET

Stephen Parke
 Fermilab

Neutrinos Physics at Dawn!

Stephen Parke
 Fermilab

Neutrinos Physics at Dawn!

Stephen Parke Fermilab

() Science Drivers

 the physics associated with neutrino mass$$
\begin{aligned}
& \nu 98 \text {, © Takayam } \\
& \text { June } 1998
\end{aligned}
$$

Atmospheric neutrino results from Super-Kamiotande \& Kamiokand - Evidence for ν_{μ} oscillations -
T. Kajita

Kamioka observatory, Univ. of Tokyo
for the $\left\{\begin{array}{l}\text { Kamiotande } \\ \text { Soper-Kamiokande }\end{array}\right\}$
Collaborations

And Detecting Their Mass

 By analyzing the cones of light, physicists determine that some neutrinos have changed form on their journey, if they can change form, they must have mass.Save Unvesty ot roma
The Nor York Times
ed by the detector except the existence of neutrino mass had been essentially ruled out.
Dr. Yoji Totsuka, leader of the coalition and director of the Kamioka Neutrino Observatory where
the underground detector is situated, 30 miles north of here in the Japan Alps, acknowledged that his group's announcement was "very strong," but said, "We have investigated all

Continued on Page A14

Question I: What Kind of Mass?

- To Be Majorana or Not To Be Majorana?

swamped by $H \rightarrow Z Z \rightarrow 4 \nu$!

See-saw Mechanism:

 Slansky; Mohapatra, Senjanovic

See-saw type I models can be embedded in GUT theories and explain the baryon asymmetry via leptogenesis.

Questions II: What is the Mass of the Sterile Neutrinos?

- How many light Neutrinos?

Except for LSND, MiniBooNE, Reactor and Gallium Anomalies,
3 can fit ALL the data and there is a lot of data!!!

- LSND, MiniBooNE, Reactor and Gallium Anomalies
can be fit with additional Light Sterile Neutrino(s) - 1, 2, 3 ...
Growing tension between Appearance data (LSND, MiniBooNE) and ν_{μ} and ν_{e} Disappearance data! !

Needs to be definitively resolved:
MicroBooNE, LAr-ND, ICARUS@Fermilab

Question III: Masses and Mixings

- Labeling massive neutrinos:

$$
\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}
$$

$\left|U_{\alpha j}\right|^{2} \quad v_{\mathrm{e}} ■ \quad v_{\mu} \square \quad v_{\tau} \square$

Fractional Flavor Content varying $\cos \delta$

$$
\begin{array}{lll}
\delta m_{\text {sol }}^{2}=+7.6 \times 10^{-5} \mathrm{eV}^{2} & & \sin ^{2} \theta_{12} \sim \frac{1}{3} \\
\left|\delta m_{a t m}^{2}\right|=2.4 \times 10^{-3} \mathrm{eV}^{2} & 0 \leq \delta<2 \pi & \sin ^{2} \theta_{23} \sim \frac{1}{2} \\
\left|\delta m_{\text {sol }}^{2}\right| /\left|\delta m_{a t m}^{2}\right| \approx 0.03 & & \sin ^{2} \theta_{13} \sim 0.02
\end{array}
$$

$\sqrt{\delta m_{a t m}^{2}}=0.05 \mathrm{eV}<\sum m_{\nu_{i}}<0.5 \mathrm{eV}=10^{-6} * m_{e}$

Except: LSND, miniBooNE, reactor anomaly, gallium anomaly.

Question III: Masses and Mixings

- Labeling massive neutrinos:

$$
\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}
$$

Fractional Flavor Content varying $\cos \delta$

$$
\begin{aligned}
& \delta m_{\text {sol }}^{2}=+7.6 \times 10^{-5} \mathrm{eV}^{2} \\
& \left|\delta m_{\text {atm }}^{2}\right|=2.4 \times 10^{-3} \mathrm{eV}^{2} \\
& 0 \leq \delta<2 \pi \\
& \sin ^{2} \theta_{23} \sim \frac{1}{2} \\
& \left|\delta m_{\text {sol }}^{2}\right| /\left|\delta m_{a t m}^{2}\right| \approx 0.03 \\
& \sin ^{2} \theta_{13} \sim 0.02
\end{aligned}
$$

$\sqrt{\delta m_{a t m}^{2}}=0.05 \mathrm{eV}<\sum m_{\nu_{i}}<0.5 \mathrm{eV}=10^{-6} * m_{e}$

Except: LSND, miniBooNE, reactor anomaly, gallium anomaly.

Question IV: Non-Standard Interactions and other exotica

- Do we need new physics beyond just Neutrino Mass?

Extra Interactions of the Neutrinos?

Do the Massive Neutrinos Decay?
Premature Decoherence?

Lorentz Violations?
-••••••

Neutrino Mixing Matrix: PMNS

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) \downarrow \begin{gathered}
\text { smaller } \nu_{e} \\
\text { content } \\
\left|U_{e l}\right|^{2}>\left|U_{e 2}\right|^{2}>\left.U_{e s}\right|^{2}
\end{gathered}
$$

Neutrino Mixing Matrix: PMNS

Assuming Unitarity:

WITHOUT UNITARITY:

Mark Ross-Lonergan, Invisibles Network Fermilab, Durham

Quark \& lepton Unitarity Triangles:

Quark Triangle:

Quark \& lepton Unitarity Triangles:

Quark Triangle:

Neutrino Triangle:

$$
U_{\mu 1}^{*} U_{e 1}+U_{\mu 2}^{*} U_{e 2}+U_{\mu 3}^{*} U_{e 3}=0
$$

only Unitarity triangle that doesn't involve ν_{τ} !

$$
|J|=2 \times \text { Area }
$$

$$
\left|U_{e 1}\right|\left|U_{\mu 1}\right|=0.0-0.5 ;\left|U_{e 2}\right|\left|U_{\mu 2}\right|=0.2-0.4 ;\left|U_{e 3}\right|\left|U_{\mu 3}\right|=0.1(1 \pm 0.2)
$$

Quark \& lepton Unitarity Triangles:

Quark Triangle:

Neutrino Triangle:

$$
U_{\mu 1}^{*} U_{e 1}+U_{\mu 2}^{*} U_{e 2}+U_{\mu 3}^{*} U_{e 3}=0
$$

only Unitarity triangle that doesn't involve ν_{τ} !

$$
\left|U_{e 1}\right|\left|U_{\mu 1}\right|=0.0-0.5 ;\left|U_{e 2}\right|\left|U_{\mu 2}\right|=0.2-0.4 ;\left|U_{e 3}\right|\left|U_{\mu 3}\right|=0.1(1 \pm 0.2)
$$

How to measure $\left|U_{\mu 1}\right|^{2}$ and $\left|U_{\mu 2}\right|^{2}$ separately ? ? ?

Quark \& lepton Unitarity Triangles:

Quark Triangle:

Neutrino Triangle:

$$
U_{\mu 1}^{*} U_{e 1}+U_{\mu 2}^{*} U_{e 2}+U_{\mu 3}^{*} U_{e 3}=0
$$

only Unitarity triangle that doesn't involve ν_{τ} !

$$
|J|=2 \times \text { Area }
$$

$$
\left|U_{e 1}\right|\left|U_{\mu 1}\right|=0.0-0.5 ;\left|U_{e 2}\right|\left|U_{\mu 2}\right|=0.2-0.4 ;\left|U_{e 3}\right|\left|U_{\mu 3}\right|=0.1(1 \pm 0.2)
$$

How to measure $\left|U_{\mu 1}\right|^{2}$ and $\left|U_{\mu 2}\right|^{2}$ separately ? ? ?
Neutrino Factory to detector in geo-synchronous orbit!!!

Unanswered Questions! ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Unanswered Questions!
 ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Unanswered Questions!
 ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Beyond ν Standard Model

- What is the mass of the Sterile Neutrinos: light? or Superheavy?
- What is the size of Non-Standard Interactions?
- Where are the True Surprises?

Unanswered Questions!
 ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion? 1 Credibility of
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Beyond ν Standard Model

- What is the mass of the Sterile Neutrinos: light? or Superheavy?
- What is the size of Non-Standard Interactions?
- Where are the True Surprises?

Leptons v Quarks:

$$
V_{M N S} \sim\left(\begin{array}{llll}
0.8 & 0.5 & 0.2 \\
0.4 & 0.6 & 0.7 \\
0.4 & 0.6 & 0.7
\end{array}\right) \quad V_{C K M} \sim\left(\begin{array}{ccc}
1 & 0.2 & 0.001 \\
0.2 & 1 & 0.01 \\
0.001 & 0.01 & 1
\end{array}\right)
$$

Very Different !!!

Flavors \& quark-lepton unification

Quarks CKM matrix = $1+$ (Cabibbo) effects
Leptons' MNSP matrix $=X+($ Cabibbo? $)$ effects contains two large angles

Cabibbo effects as deviation from X
example: $\quad \theta_{13} \simeq \theta_{c} / \sqrt{ } 2 \quad$ deviation from zero?
speculate: $\quad \theta_{\text {atm }} \simeq \pi / 4+O\left(\theta_{c}\right) \quad$ deviation from $\pi / 4$?

Masses \& Mixing (contr.)

- Quark-Lepton complementarity $\theta_{12}+\theta_{C}=45^{\circ}$
- Solar sum rules Bimaximal $\theta_{12}=45^{\circ}+\theta_{13} \cos \delta$

```
Plus HO corrections..
```

Tri-bimaximal $\theta_{12}=35^{\circ}+\theta_{13} \cos \delta$
Golden Ratio $\quad \theta_{12}=32^{\circ}+\theta_{13} \cos \delta$

- Atm. sum rules

Plus charged Lepton Corrections..

Tri-bimaximal- $\theta_{12}=35^{\circ} \quad \theta_{23}=45^{\circ}$
cabibbo $\quad \theta_{13}=\theta_{C} / \sqrt{2}=9.2^{\circ}$
Trimaximalı $\theta_{23}=45^{\circ}+\sqrt{2} \theta_{13} \cos \delta$
Trimaximal2 $\theta_{23}=45^{\circ}-\frac{\theta_{13}}{\sqrt{2}} \cos \delta$
Now that θ_{13} is measured these predict $\cos \delta$

Given this end game:

Given this end game:

Deduce the rules of chess!!!

Given this end game:

Deduce the rules of chess!!!

theorists need more hints !

Precision Measurements:

Nu e Disappearance Experiments:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{e e}^{2} L}{4 E}\right)+O\left(\Delta_{21}^{2}\right),
$$

$\Delta m_{e e}^{2}$ is the electron neutrino weighted average of Δm_{31}^{2} and Δm_{32}^{2}

Reactor Experiments Nu 2014:

Double Chooz:

$$
\sin ^{2}\left(2 \theta_{13}\right)=\left(0.09^{+0.03}-0.04\right)
$$

RENO

$$
\sin ^{2}\left(2 \theta_{13}\right)=0.101 \pm 0.008 \text { (stat.) } \pm 0.010 \text { (sys.) }
$$

Daya Bay:

$$
\begin{aligned}
\sin ^{2} 2 \theta_{13} & =0.084_{-0.005}^{+0.005} \\
\left|\Delta m_{e e}^{2}\right| & =2.44_{-0.11}^{+0.10} \times 10^{-3} \mathrm{eV}^{2}
\end{aligned}
$$

from RENO:

Observation of new reactor v component at 5 MeV

Fraction of 5 MeV excess (\%) to expected flux

- Near : $2.303+/-0.401$ (experimental) $+/-0.492$ (expected shape error)
- Far : $1.775+/-0.708$ (experimental) $+/-0.486$ (expected shape error)

Seo Nu 2014

from Daya Bay:

from Daya Bay:

- θ_{13} determined by reactor experiments: eventually 5% or better
- JUNO and RENO-50 best determination of δm_{21}^{2} and θ_{12}
- Atmospheric Mass Ordering (Hierarchy)? maybe!

Energy resolution and linearity requirements extremely serve!

Nu mu Disappearance Experiments:

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow\right. & \left.\nu_{\mu}\right)=1-\sin ^{2} 2 \theta_{\mu \mu} \sin ^{2}\left(\frac{\Delta m_{\mu \mu}^{2} L}{4 E}\right)+O\left(\Delta_{21}^{2}\right) \\
& \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=4 \cos ^{2} \theta_{13} \sin ^{2} \theta_{23}\left(1-\cos ^{2} \theta_{13} \sin ^{2} \theta_{23}\right)
\end{aligned}
$$

- Non-zero θ_{13} modifies the octant degeneracy!!!
$\Delta m_{\mu \mu}^{2}$ is the muon neutrino weighted average of Δm_{31}^{2} and Δm_{32}^{2}

Nu mu Disappearance Experiments:

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow\right. & \left.\nu_{\mu}\right)=1-\sin ^{2} 2 \theta_{\mu \mu} \sin ^{2}\left(\frac{\Delta m_{\mu \mu}^{2} L}{4 E}\right)+O\left(\Delta_{21}^{2}\right) \\
& \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=4 \cos ^{2} \theta_{13} \sin ^{2} \theta_{23}\left(1-\cos ^{2} \theta_{13} \sin ^{2} \theta_{23}\right)
\end{aligned}
$$

- Non-zero θ_{13} modifies the octant degeneracy!!!
$\Delta m_{\mu \mu}^{2}$ is the muon neutrino weighted average of Δm_{31}^{2} and Δm_{32}^{2}

$$
\begin{array}{ll}
\sin ^{2} \theta_{23}^{(1)}=\sin ^{2} \theta_{\mu \mu} / \cos ^{2} \theta_{13} \approx \sin ^{2} \theta_{\mu \mu}\left(1+\sin ^{2} \theta_{13}\right), & \sin ^{2} \theta_{\mu \mu} \leq \frac{1}{2} \\
\sin ^{2} \theta_{23}^{(2)}=\cos ^{2} \theta_{\mu \mu} / \cos ^{2} \theta_{13} \approx \cos ^{2} \theta_{\mu \mu}\left(1+\sin ^{2} \theta_{13}\right), &
\end{array}
$$

T2K Disappearance:

Maximal mixing is not the same as maximum disappearance if θ_{13} is not zero!

For θ_{13} given by reactor experiments:
At reactor value: $\frac{1}{2 \cos ^{2} \theta_{13}} \approx 0.513$

- Near $\pi / 4$ the precision on θ_{23} from appearance measurements can exceeds that of disappearance measurements

Appearance Experiments:

- First Row: Superbeams where ν_{e} contamination $\sim 1 \%$
- Second Row: ν-Factory or β-Beams, no beam contamination $\boldsymbol{\nu}_{\boldsymbol{\tau}}$ at Neutrino Factory

Appearance Experiments:

- First Row: Superbeams where ν_{e} contamination $\sim 1 \%$
- Second Row: ν-Factory or β-Beams, no beam contamination $\nu_{\boldsymbol{\tau}}$ at Neutrino Factory
- goal: θ_{23}, δ and atmospheric mass ordering $\left(\delta m_{31}^{2}\right)$
$\mathcal{L B L \cdot { } _ { \mu \rightarrow e }} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}$

$$
\Delta_{i j}=\delta m_{i j}^{2} L / 4 E
$$

CP violation !!!
where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \sin \Delta_{31}$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \sin \Delta_{21}
$$

$L B L^{P_{\mu \rightarrow e}} \approx\left|\sqrt{P_{\text {atm }}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{\text {sol }}}\right|^{2}$

$$
\Delta_{i j}=\delta m_{i j}^{2} L / 4 E
$$

CP violation !!!
where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \sin \Delta_{31}$ and $\sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \sin \Delta_{21}$

$$
P_{\mu \rightarrow e} \approx P_{a t m}+2 \sqrt{P_{\text {atm }} P_{s o l}} \cos \left(\Delta_{32} \pm \delta\right)+P_{s o l}
$$

$$
\cos \left(\Delta_{32} \pm \delta\right)=\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta
$$

$\Delta P_{c p}=2 \sin \delta \sin 2 \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \cos \theta_{13} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

In Matter:

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{\text {atm }}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{\text {sol }}}\right|^{2}
$$

$$
\text { where } \sqrt{P_{\text {atm }}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
$$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

Anti-Nu: Normal Inverted
For $L=1200 \mathrm{~km}$

$$
\text { dashes } \delta=\pi / 2
$$

and $\sin ^{2} 2 \theta_{13}=0.04$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
$$

$$
\text { solid } \delta=3 \pi / 2
$$

BiProbability Diagrams:

BiProbability Diagrams:

BiProbability Diagrams:

BiProbability Diagrams:

NOvA \& LBNF

1 and 2σ Contours for Starred Point

NOvA \& LBNF

1 and 2σ Contours for Starred Point

- $\sin ^{2} \theta_{23}=0.42 \Rightarrow \sin ^{2} 2 \theta_{\mu \mu}=0.968$
- $\sin ^{2} \theta_{23}=0.58 \Rightarrow \sin ^{2} 2 \theta_{\mu \mu}=0.982$
- Can be distinguished in disappearance channel with sufficient precision!
-Why don't use values that cannot be distinguished?

$$
\text { e.g. } \sin ^{2} \hat{\theta}_{23}=(0.430,0.594)
$$

NOvA \& LBNF
 LBNE:

1 and 2σ Contours for Starred Point

@ same L/E as NOvA

- $\sin ^{2} \theta_{23}=0.42 \Rightarrow \sin ^{2} 2 \theta_{\mu \mu}=0.968$
- $\sin ^{2} \theta_{23}=0.58 \Rightarrow \sin ^{2} 2 \theta_{\mu \mu}=0.982$
- Can be distinguished in disappearance channel with sufficient precision!
- Why don't use values that cannot be distinguished?

$$
\text { e.g. } \sin ^{2} \hat{\theta}_{23}=(0.430,0.594)
$$

CPV \& Neutrino Anti-Neutrino Asymmetry:

In Vacuum, at 1st Oscillation Maximum:

$$
A_{v a c} \equiv \frac{|P-\bar{P}|}{|P+\bar{P}|} \approx \frac{1}{11} \frac{\sin 2 \theta_{13} \sin \delta}{\left(\sin ^{2} 2 \theta_{13}+0.002\right)}=0.3 \sin \delta
$$

$P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ ranges is between $\frac{1}{2}$ and 2 times $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)!!!$

2nd Oscillation Max:

ESS to Garpenburg (540km)

$A_{v a c} \approx 0.75 \sin \delta$

$$
\begin{gathered}
A_{v a c}\left(2^{\text {nd }} \mathrm{OM}\right) \approx 2.5 \quad A_{v a c}\left(1^{\text {st }} \mathrm{OM}\right) \\
(9 / 11 \text { of } 3)
\end{gathered}
$$

$P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ ranges is between $\frac{1}{7}$ and $7 P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$

Appearance Probabilities more dynamic near 2nd Osc. Max. than 1st. OM

Leptogenesis:

- CP Violation, as well as L Violation, are key ingredients of Leptogenesis

> The observation of L violation and of CPV in the lepton sector would be a strong indication (even if not a proof) of leptogenesis as the origin of the baryon asymmetry.

Tensions in Current Data:

Relation between appearance and disappearance

We find: ${ }^{\left({ }_{\nu}^{e}\right.}{ }_{e}$ disappearance experiments consistent among themselves, ${ }^{\left({ }_{\nu}\right.}{ }_{e}$ appearance experiments consistent among themselves.
But:

$3+1$ neutrinos

At $L \gg 4 \pi E / \Delta m_{41}^{2}$, but $L \ll 4 \pi E / \Delta m_{31}^{2}$

$$
\begin{aligned}
P_{e e} & =1-2\left|U_{e 4}\right|^{2}\left(1-\left|U_{e 4}\right|^{2}\right) \\
P_{\mu \mu} & =1-2\left|U_{\mu 4}\right|^{2}\left(1-\left|U_{\mu 4}\right|^{2}\right) \\
P_{e \mu} & =2\left|U_{e 4}\right|^{2}\left|U_{\mu 4}\right|^{2}
\end{aligned}
$$

It follows

$$
2 P_{e \mu} \simeq\left(1-P_{e e}\right)\left(1-P_{\mu \mu}\right)
$$

In the $3+1$ case, at large enough baseline, there is a one-to-one relation between the appearance and disappearance probabilities.

New Data:

Conclusions:

- To Be Majorana or Not To Be Majorana?
- We know $\left(\left|U_{e 2}\right|^{2},\left|U_{e 3}\right|^{2},\left|U_{\mu 3}\right|^{2}\right)$ with precision of $(5,10,15) \%$ but have little information on the other 6 elements of the PMNS matrix without assuming Unitarity. Stringent tests of the $\nu \mathrm{SM}$ Paradigm needed.
- Determining the Mass Hierarchy \& measuring CPV are the next steps. Tau's?
- $m_{\text {lite }}$, if $\ll \delta m_{21}^{2}$, a new scale to explain !

Conclusions:

- To Be Majorana or Not To Be Majorana?
- We know $\left(\left|U_{e 2}\right|^{2},\left|U_{e 3}\right|^{2},\left|U_{\mu 3}\right|^{2}\right)$ with precision of $(5,10,15) \%$ but have little information on the other 6 elements of the PMNS matrix without assuming Unitarity. Stringent tests of the ν SM Paradigm needed.
- Determining the Mass Hierarchy \& measuring CPV are the next steps. Tau's?
- $m_{\text {lite }}$, if $\ll \delta m_{21}^{2}$, a new scale to explain !
- Are there lite Sterile neutrinos?

Can we exclude $\left|U_{e 4}\right|^{2}$ and $\left|U_{\mu 4}\right|^{2}>0.01$, say, for $\delta m^{2} \sim 1 \mathrm{eV}^{2}$

- Solving the Neutrino Masses and Mixing pattern is difficult challenge for Theory! Need hints.
- Where are there further "SURPRISES" in the Neutrino Sector?

Ernest Rutherford:

We haven't got the money,

Ernest Rutherford:

We haven't got the money,

Ernest Rutherford:

We haven't got the money,

so we'll have to think!

