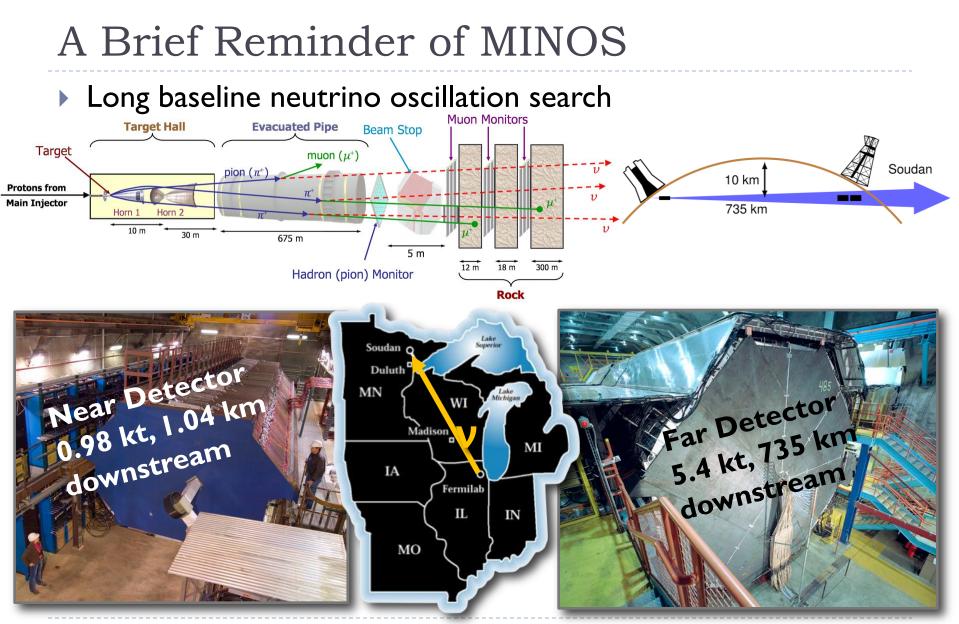


MINOS+ Results and Future Plans

A.P. Schreckenberger – The University of Texas at Austin (On behalf of the MINOS and MINOS+ Collaborations)

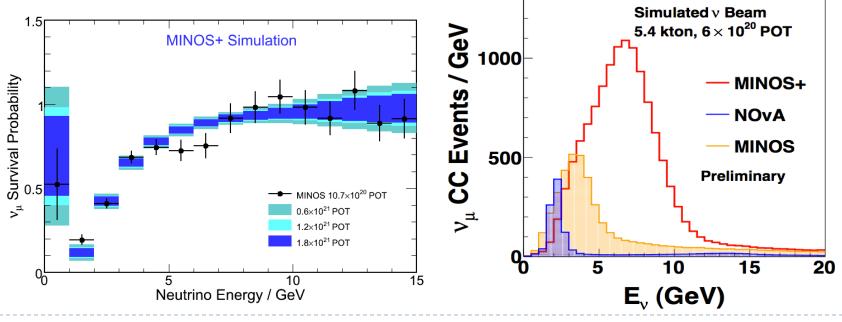
Why we are excited...

MINOS/MINOS+ makes use of the NuMI beam

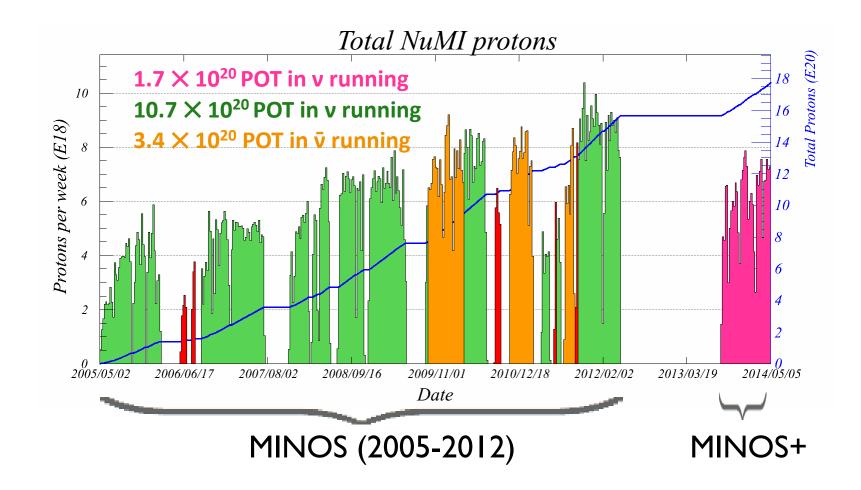

Most powerful neutrino beam in operation with upgrades in the works

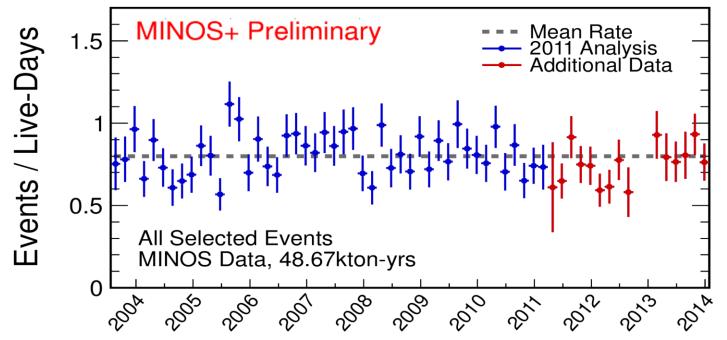
New results from both MINOS and MINOS+

- Standard three-flavor oscillations
- Exotic phenomena
- Sterile neutrino searches



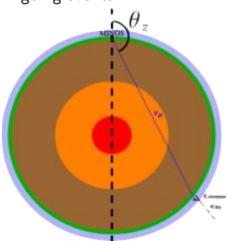
What about MINOS+

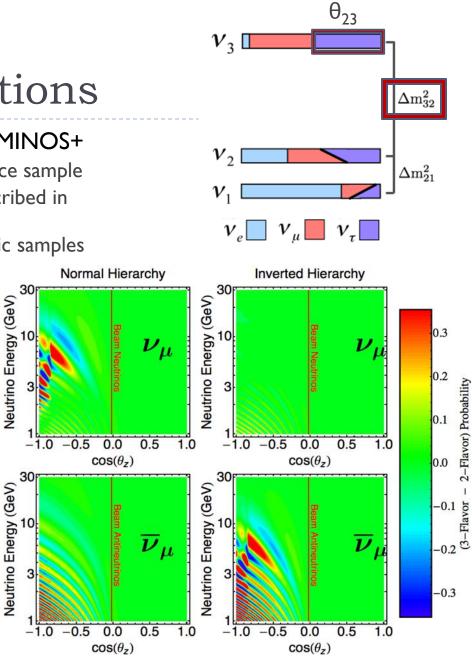

Same magnetized MINOS detectors used in MINOS+


Medium-energy NuMI beam

- Higher energy spectra and decreased cycle time when compared to MINOS
- New target design implemented to handle increased beam power
- Expect roughly 4000 v_{μ} CC events per 6×10²⁰ protons-on-target (POT) year
- > Only wide-band beam long baseline experiment operating in this decade
 - New physics to be investigated in this new energy window!

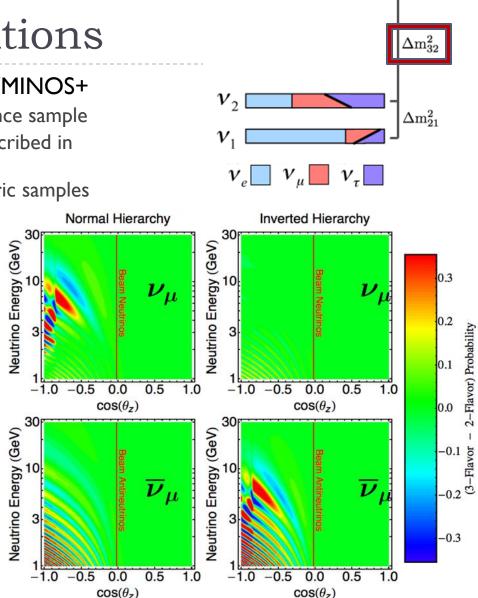
MINOS & MINOS+ Data




Updating oscillation parameter measurement with increased atmospheric neutrino statistics

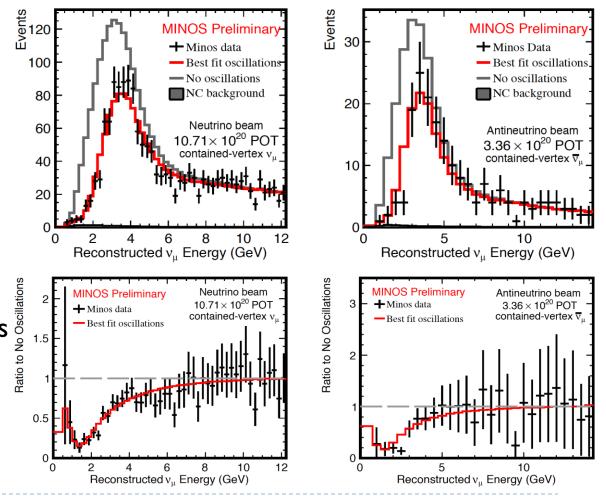
Additional 10.8 kton-year (+28%) over previous beam+atmospherics combined analysis [PRL 112, 191801 (2014)]

Three-Flavor Oscillations


- Combine various analyses from MINOS/MINOS+
 - Full MINOS v_{μ} -CC and \bar{v}_{μ} -CC disappearance sample
 - Full v_e -CC, \bar{v}_e -CC appearance sample, described in PRL 110 171801 (2013)
 - Full MINOS and new MINOS+ atmospheric samples
- Sensitivity to θ_{13} , θ_{23} octant, mass hierarchy, and δ_{CP} from v_e sample
- Enhanced by atmospheric data
 - Matter effects give rise to larger differences in multi-GeV, upward-going events

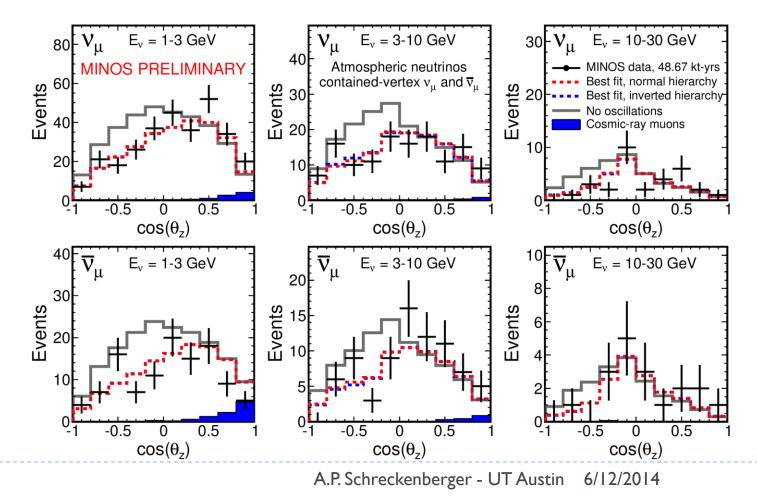
Three-Flavor Oscillations

- Combine various analyses from MINOS/MINOS+
 - Full MINOS v_{μ} -CC and \bar{v}_{μ} -CC disappearance sample
 - Full v_e -CC, \bar{v}_e -CC appearance sample, described in PRL 110 171801 (2013)
 - Full MINOS and new MINOS+ atmospheric samples
- Sensitivity to θ_{13} , θ_{23} octant, mass hierarchy, and δ_{CP} from v_e sample
- Enhanced by atmospheric data
 - Matter effects give rise to larger differences in multi-GeV, upward-going events
 - Effects are dependent on mass hierarchy and charge conjugation
- MINOS first to probe effect with event-by-event charge separation


 v_3

 θ_{23}

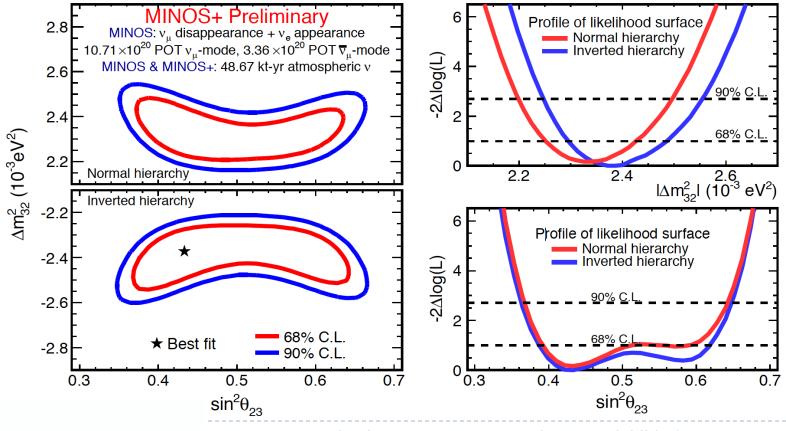
Analysis Fundamentals – Beam Data


- Use energy spectra to perform precision measurement of neutrino oscillations

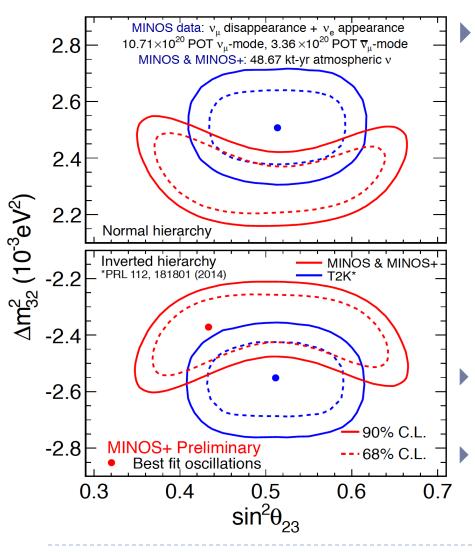
 [#]
 [#]
- Make a fit to the three-flavor oscillation framework
- Use both the beam and atmospheric data to generate constraints on certain oscillation parameters

Analysis Fundamentals – Atmospheric Data

- Contained v_{μ} events as a function of angle for three energy ranges
- Fits to three-flavor oscillation framework include non-fiducial events



10


Combined Fit Allowed Regions

- Solar parameters fixed to $\Delta m^2_{21} = 7.54 \times 10^{-5} \text{eV}^2$ and $\sin^2 \theta_{12} = 0.307$
- θ_{13} fit as nuisance parameter, constrained by reactor results: $\sin^2 \theta_{13} = 0.0242 \pm 0.0025$
- θ_{23} , Δm_{32}^2 , and δ_{CP} unconstrained

> 19 systematics included as nuisance parameters in fit

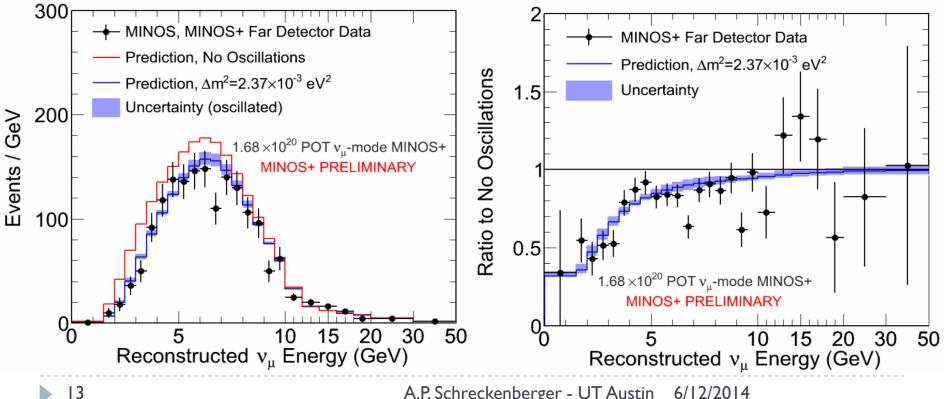
Three Flavor Takeaway

Three-Flavor Best Fit

Inverted Hierarchy $\left|\Delta m_{32}^2\right| = 2.37^{+0.11}_{-0.07} \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.43^{+0.19}_{-0.05}$ $0.36 < \sin^2 \theta_{23} < 0.65 \text{ (90\% C.L.)}$

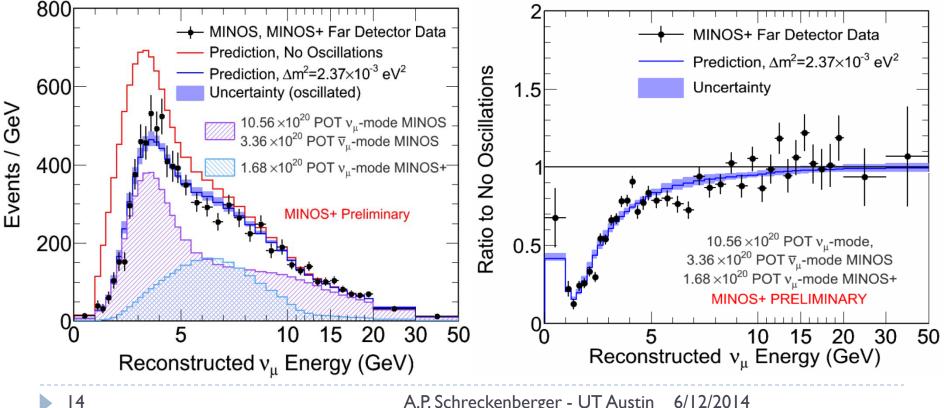
Normal Hierarchy $\left|\Delta m_{32}^2\right| = 2.34^{+0.09}_{-0.09} \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.43^{+0.16}_{-0.04}$ $0.37 < \sin^2 \theta_{23} < 0.64 \text{ (90\% C.L.)}$

Most precise measurement of $|\Delta m^2_{32}|$

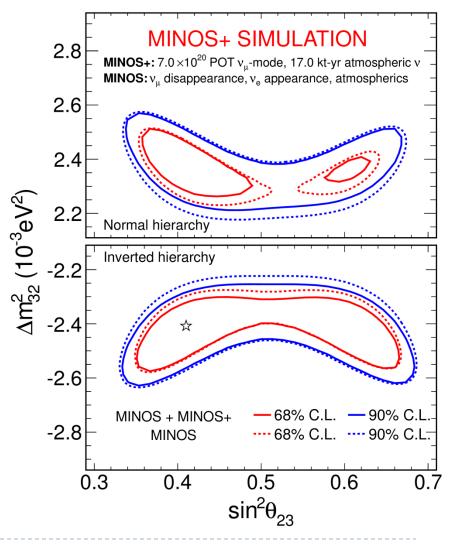

Results highlight precision era of field

A Look Towards Tomorrow

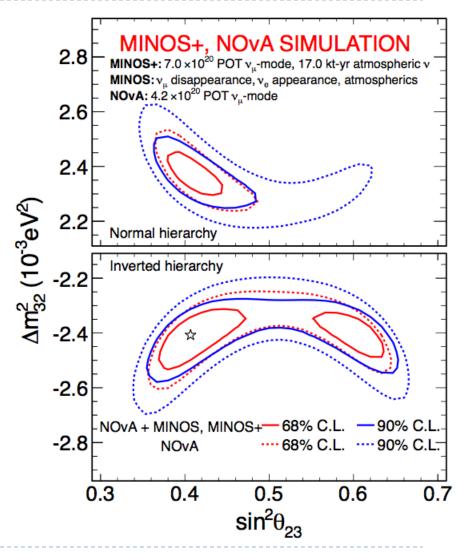
MINOS+ Far Detector Beam Data


Data consistent with oscillation measurements from MINOS

μ **Unoscillated Prediction** 1254.8 52.03 Oscillated Prediction 1085.2 47.09 48 1037 Data


Adding MINOS and MINOS+ Samples

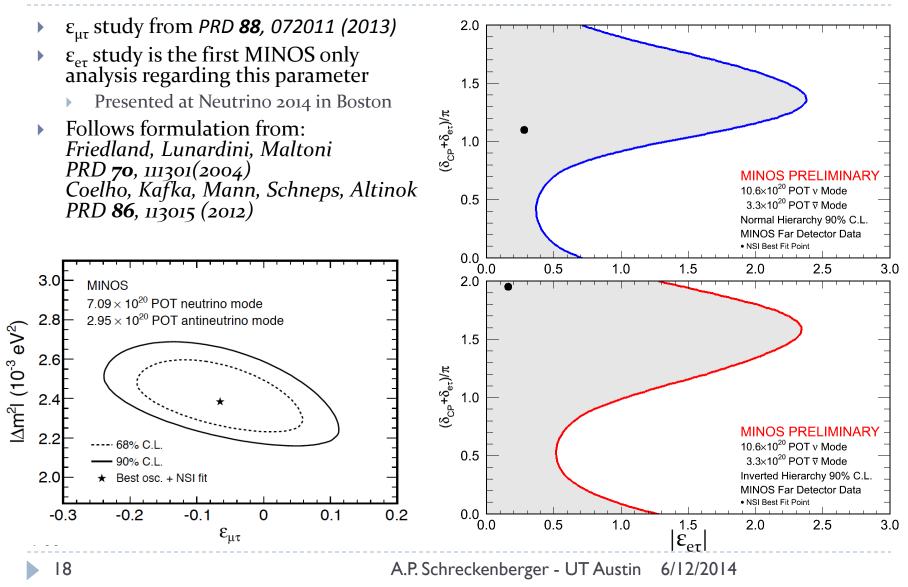
- Best resolution yet of survival probability curve
 - Expect combined MINOS/MINOS+ fit in the Fall
 - 3.5×10²⁰ POT expected by September 2014 shutdown


A Look Towards Tomorrow's Sensitivity

- Showing projected MINOS & MINOS+ combined sensitivity by 2015 compared to MINOS results
- Sensitivities assume MINOS three-flavor best fit results from PRL 112, 191801 (2014)

A Look Towards Tomorrow's Sensitivity

- Showing projected MINOS & MINOS+ combined sensitivity by 2015 compared to MINOS results
- Sensitivities assume MINOS three-flavor best fit results from PRL 112, 191801 (2014)
- NOvA sensitivity for 4.2×10²⁰ POT
- During NOvA ramp-up, combination with MINOS+ maximizes improvement on oscillation parameter measurement

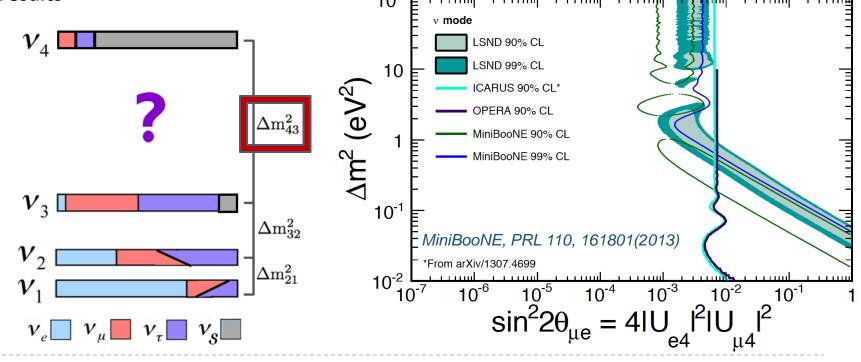

How standard are you? – An Intro to NSI

- Non-Standard Interaction (NSI) picture accommodates deviations from standard oscillation picture
 - Analogous to MSW matter effect

$$H = U_{PMNS} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U_{PMNS}^{\dagger} + \sqrt{2}G_F n_e \begin{bmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{\star} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{\star} & \epsilon_{\mu\tau}^{\star} & \epsilon_{\tau\tau} \end{bmatrix}$$

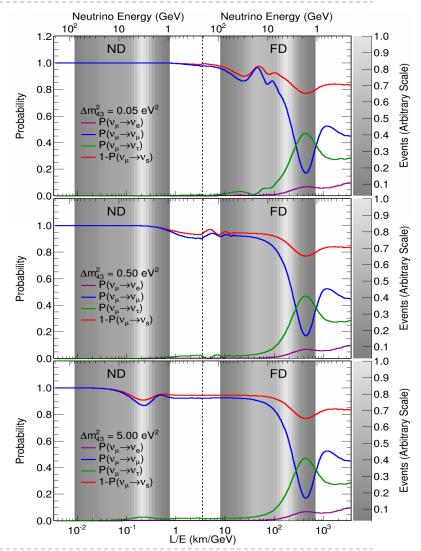
- \blacktriangleright Fits to MINOS data performed for limits on $\epsilon_{\mu\tau}$ and $\epsilon_{e\tau}$
 - $\varepsilon_{\mu\tau}$ sensitivity comes from v_{μ} CC disappearance analysis
 - $\varepsilon_{e\tau}$ sensitivity comes from v_e CC appearance analysis

NSI Results

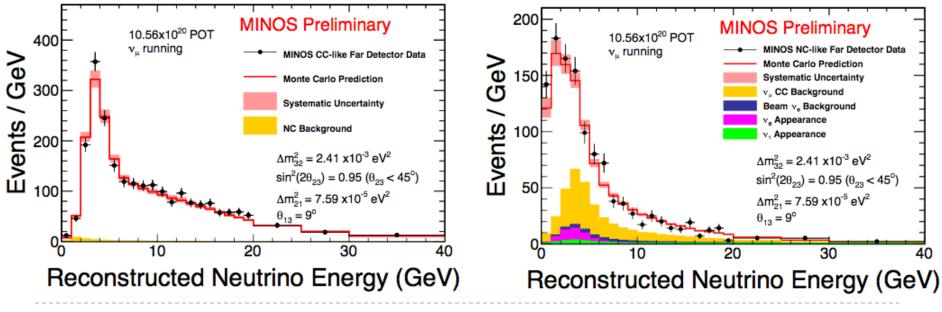


Hunting for Sterile Neutrinos

MINOS


Sterile Neutrinos – More than Three?

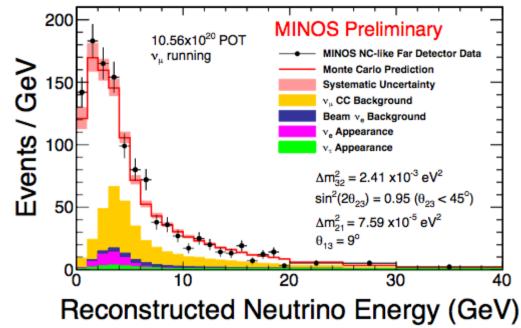
- Sterile neutrino: theorized additional states that do not interact through the weak force
 - Would add additional parameters to the oscillation model
- Anomalies in reactor, short-baseline, radiochemical experiments
 - Oscillations into light sterile neutrino possible explanation
- Evidence of sterile mixing is inconclusive due to tension between various experiment results


A Glimpse at Four-Flavor Oscillations

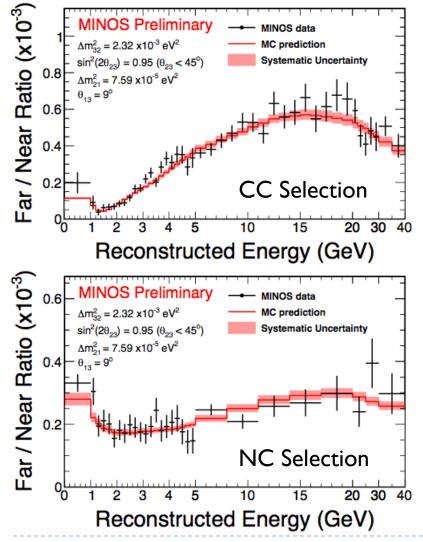
- $\nu_{\mu} \rightarrow \nu_{s}$ mixing yields energy-dependent depletions in ν_{μ} CC and NC spectra relative to 3-flavor mixing
- Small Δm_{43}^2 :
 - Spectra distortions above oscillation maximum at Far Detector
 - No Near Detector effects
- Medium Δm_{43}^2 :
 - Rapid oscillations average out at Far Detector
 - No Near Detector effects
 - Counting experiment
- Large Δm_{43}^2 :
 - Rapid oscillations average out at Far Detector
 - Near Detector distortions affect Far Detector prediction

Far Detector CC and NC Spectra

- Comparison with 3-flavor prediction for full MINOS lowenergy beam neutrino mode sample
 - Both CC and NC events important for sterile neutrino analysis
 - Focus on NC event rate to perform counting experiment search


Counting for Steriles

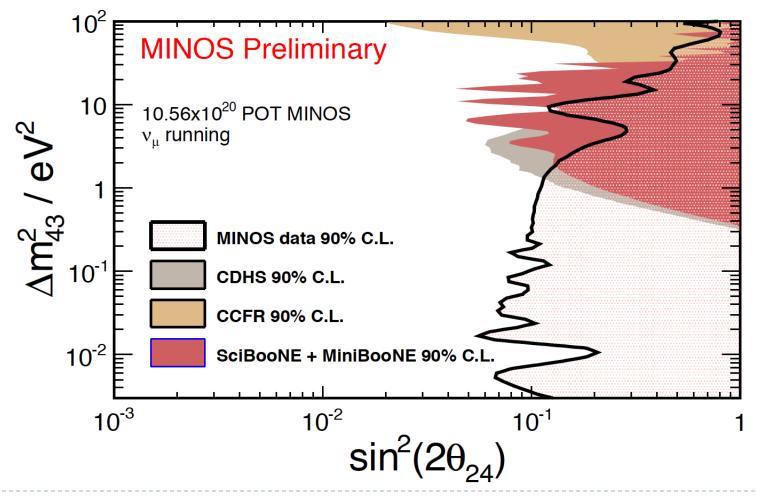
- Sterile neutrinos could appear in event rate deficit
 - I221 NC-like events in I0.56×10²⁰ POT MINOS sample
 - Construct rate metric that accounts for CC backgrounds


$$R = \frac{N_{Data} - \sum Backgrounds_{Pred cc}}{Signal_{Pred NC}}$$

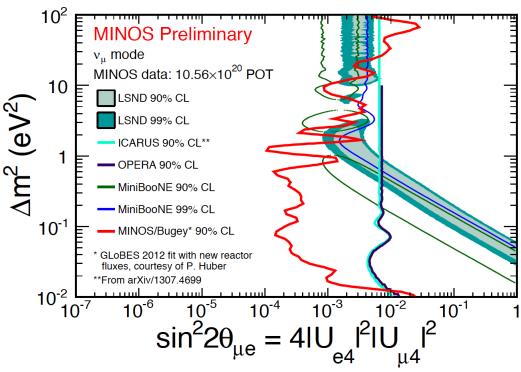
- R < 1.0 hints sterile neutrino driven deficit
- Results show no evidence for sterile neutrinos at $\Delta m_{43}^2 = 0.5 \text{ eV}^2$

Results from MINOS data: R = 1.049 ± 0.076 (0-200 GeV) R = 1.093 ± 0.097 (0-3 GeV)

Expanded Analysis Approach

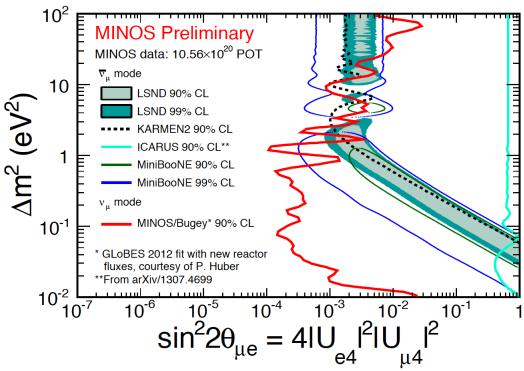


- Assume a four-flavor 3+1 oscillation model
 - Apply oscillations to both Near and Far Detector
 - Make use of distance to meson decay point from simulation
 - Fit for Δm_{43}^2 , Δm_{32}^2 , θ_{23} , θ_{24} , and θ_{34}
- Near Detector oscillation handling
 - Constrain ND event rate
 - Fit data directly to oscillated F/N ratio
- Systematics enter fit as covariance matrix
 - Re-evaluated beam flux uncertainties
- Feldman-Cousins correction applied to log-likelihood surfaces


Systematics 26 systematics included in fit **MINOS Preliminary** F/N Fractional Error 0.2 CC Total Systematic Hadron production, beam optics, 0.1 detector acceptance, energy scale, cross-section $N \quad N$ $\chi^2 = \sum \sum (o_i - e_i)^T [V^{-1}]_{ij} (o_j - e_j)$ -0.1 i=1 j=1-0.2 Observed events in bin i O_i : V: Covariance matrix 20 10 30 Reconstructed Energy (GeV) Predicted events in bin i e_i : 10^{2} **MINOS** Preliminary **/INOS** Preliminary F/N Fractional Errol 0.2 NC Total Systematic 10 $\Delta m^{2}_{43} / eV^{2}$ 10.56x10²⁰ POT MINOS data v., running Statistics and Beam Focusing Normalization Acceptance 10 -0.⁻ NC Selection Total Systematics Sensitivity to sterile mixing -0.2 10^{-2} 20 30 0 10 0.2 40 0.1 0.3 0.4 Reconstructed Energy (GeV) $sin^2(2\theta_{24})$

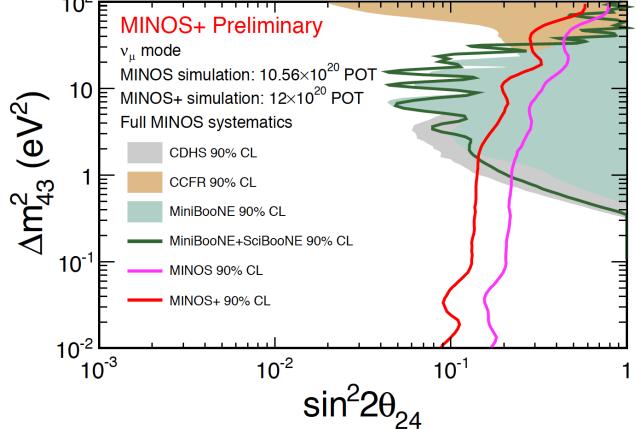
MINOS Disappearance Limit

Feldman-Cousins corrected contour



Comparison to Appearance Results

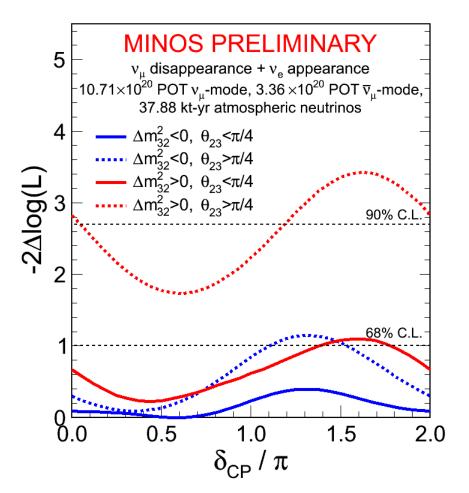
- Combine MINOS disappearance 90% C.L. in θ_{24} and Bugey reactor experiment 90% C.L. disappearance limit in θ_{14} (Neutrino Mode MINOS and MiniBooNE)
- For a 3+1 model: $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \sin^2 \theta_{24}$
- Bugey limit computed from GLoBES 2012 fit using new reactor fluxes, provided by Patrick Huber
- MINOS results increases tension between null and signal results for $\Delta m_{43}^2 < 1 \text{ eV}^2$


Comparison to Appearance Results

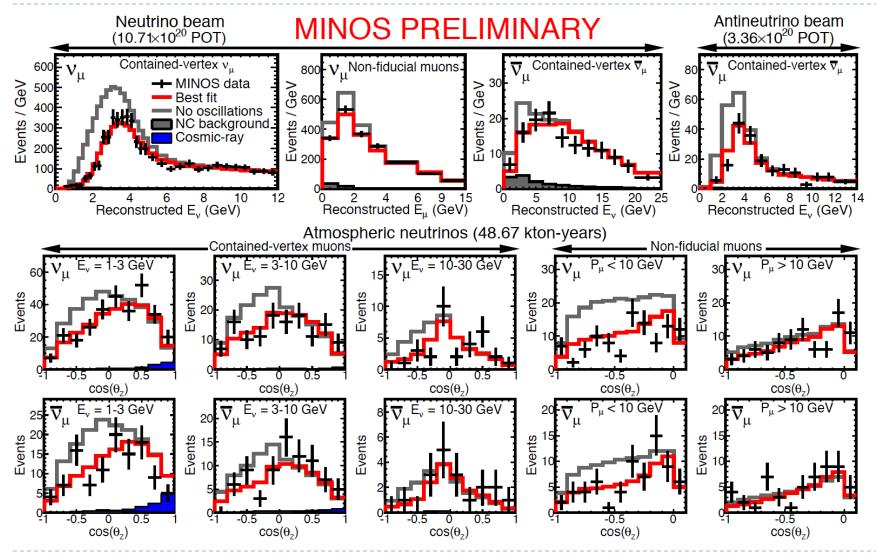
- Compare MINOS neutrino data to world antineutrino data
- Assuming 3+1 model and CPT conservation (makes SBL neutrino and antineutrino oscillations equivalent)
- MINOS results increases tension between null and signal results for $\Delta m_{43}^2 < 1 \text{ eV}^2$
- ▶ Work on 3.4×10²⁰ POT antineutrino data sterile neutrino search underway

Sterile Neutrino in MINOS+

Expected sensitivity from MINOS+ data by 2016, compared to other short-baseline experiments and MINOS
10² [10²]


Summary

- MINOS completed a search for sterile neutrinos in a long-baseline experiment
 - No evidence of sterile neutrino oscillations found
 - Limits span four orders of magnitude of Δm^2_{43}
- MINOS placed new constraints on the non-standard interaction parameter $\epsilon_{\rm et}$
- MINOS three-flavor analysis improved with increased statistics from MINOS+ atmospheric data
- MINOS+ is taking data in the medium-energy NuMI beam
 - Precision test of oscillation parameters in different energy range
 - Results of oscillation analysis from beam data in Fall
 - Keep watch for any surprises


Additional Materials

Adding Appearance

- Sensitivity to θ₁₃ in MINOS from ν_e appearance search
- Limits on δ_{CP} obtained by fitting data with respect to reactor experiments
 - First limits on this parameter shown by MINOS in PRL 110, 171801 (2013)
 - Addition of disappearance and atmospheric data further disfavor normal mass hierarchy and upper octant
- Published by PRL: PRL 112, 191801 (2014)

All MINOS FD Data – 3-flavor

A.P. Schreckenberger - UT Austin 6/12/2014

33

Beam and Atmospheric Event Yields

	Simulation		Events
Data Set	No osc.	With osc.	Observed
ν_{μ} from ν_{μ} beam	3201	2496	2579
$\bar{\nu}_{\mu}$ from ν_{μ} beam	363	319	312
Non-fiducial ν from ν_{μ} beam	3197	2807	2911
Atm. contained-vertex $\nu_{\mu} + \bar{\nu}_{\mu}$	1414	1024	1134
Atm. non-fiducial $\mu^+ + \mu^-$	732	575	590
Atm. showers	932	877	899

	Data	Expectation $(\Delta m_{32}^2 = 2.10 \times 10^{-3}, \sin^2 \theta_{23} = 0.5)$					
		cosmic	atmos $\nu_e/\bar{\nu}_e$ & $\nu_\mu/\bar{\nu}_\mu$ CC	$\nu_{\tau}/\bar{\nu}_{\tau}$ CC	NC	ν -induced μ	Total
CV_{μ}	1134	44 ± 4	1023 ± 150	3 ± 1	32 ± 8	7 ± 2	1109 ± 158
NIM	590	0 ± 0	20 ± 3	0 ± 0	0 ± 0	571 ± 143	591 ± 143
CV_e	899	110 ± 11	636 ± 79	5 ± 1	159 ± 40	1 ± 0	911 ± 120
Total	2623	2611 ± 244					
	Data		Expecta	tion (no osci	illations)		
		cosmic	atmos $\nu_e/\bar{\nu}_e$ & $\nu_\mu/\bar{\nu}_\mu$ CC	$\nu_{\tau}/\bar{\nu}_{\tau}$ CC	NC	ν -induced μ	Total
CV_{μ}	1134	44 ± 4	1327 ± 196	0 ± 0	32 ± 8	11 ± 3	1414 ± 204
NIM	590	0 ± 0	33 ± 5	0 ± 0	0 ± 0	699 ± 175	732 ± 175
CV_{c}	899	110 ± 11	661 ± 83	0 ± 0	159 ± 40	1 ± 0	932 ± 124

A.P. Schreckenberger - UT Austin 6/12/2014

Best Fit Results

Hierarchy	Best fit oscillation parameters			-2∆log(L)	
	Δm^2_{32} (×10 ⁻³ eV ²)	$\sin^2\theta_{23}$	$\sin^2\theta_{13}$	δ_{CP}	
Normal	2.03	0.50	0.0242	0	
Inverted	2.13	0.50	0.0242	1.57	0.559

Atmospheric Data Only Atmos+Disappearance Data

Hierarchy	Best fit oscillation parameters			-2∆log(L)	
	Δm^2_{32} (×10 ⁻³ eV ²)	$\sin^2\theta_{23}$	$\sin^2\theta_{13}$	δ_{CP}	
Normal	2.31	0.59	0.0243	0	0.020
Inverted	2.37	0.43	0.0243	1.57	

Atmos+Disappearance+Appearance Data

Hierarchy	Best fit oscillation parameters			-2∆log(L)	
	Δm^2_{32} (×10 $^{-3}~{ m eV^2}$)	$\sin^2\theta_{23}$	$\sin^2\theta_{13}$	δ_{CP}	
Normal	2.34	0.43	0.0242	1.77	0.16
Inverted	2.37	0.43	0.0243	1.77	-

Hierarchy	Parameter	Best fit	Confidence limits
	$ \Delta m^2_{32} $ (×10 ⁻³ eV ²)	2.34	2.25 - 2.43 (68% C.L.)
Normal	$\sin^2 \theta_{23}$	0.43	0.39 - 0.59 (68% C.L.)
			0.37 - 0.64 (90% C.L.)
Inverted	$ \Delta m^2_{32} $ (×10 ⁻³ eV ²)	2.37	2.30 - 2.48 (68% C.L.)
	$\sin^2 \theta_{23}$	0.43	0.38 - 0.62 (68% C.L.)
	SIII 023		0.36 - 0.65 (90% C.L.)

Preference for inverted hierarchy: -2∆log£=0.16 Preference for lower octant of θ_{23} : -2 $\Delta \log \mathcal{L}$ =0.38 Preference for non-maximal mixing: -2∆logL=0.66