The evolution of (experimental) neutrino cross sections

Joe Grange

University of Florida (thesis research) Argonne National Laboratory (present address)

(MiniBooNE detector)

- From first detection towards precision measurements of oscillatory and intranuclear behavior
- Nudging the field along with MiniBooNE antineutrinos
 - large A-dependent enhancements?
 - separating ν from $\overline{\nu}$ without magnets
 - topological cross sections
- Forward

- From first detection towards precision measurements of oscillatory and intranuclear behavior
- Nudging the field along with MiniBooNE antineutrinos
 - large A-dependent enhancements?
 - separating v from \overline{v} without magnets
 - topological cross sections
- Forward

- "I have postulated a particle that cannot be detected..."

(spectrum)

47th Fermilab User's Meeting

11th June 2014

The Evolution of $v \sigma$'s

1995

Fortunately, "never" \rightarrow 25 years:

- Reines and Cowan detected the first definitive neutrino interactions
 - using reactor antineutrino source and doped scintillator bath to provide doubly-coincident signal
 - While at it, they calculated the very first Vinduced cross section:

A reactor-power-dependent signal was observed which was (within 5 percent) in agreement with a cross section for reaction 1 of 6.3×10^{-44} cm².

Science 124, 103 (1956)

5

The Evolution of ν σ 's

47th Fermilab User's Meeting

- Same year: discovery of maximal weak parity violation
 - immediate implication: neutrino σ 's change by factor 2
- Few years later, Reines & Cowan:

we find the cross section for fission antineutrino absorption by protons:

 $\bar{\sigma} = 11 \pm 2.6 \times 10^{-44} \text{ cm}^2 / \bar{\nu}$

This value of the cross section is consistent with predictions based on the two-component theory of the neutrino.⁹

Phys. Rev. 113, 273 (1959)

- Dramatic change due to revised detection efficiency calculation. Hard to imagine *a priori* assumptions weren't involved...
- Field of precision V cross sections off to an inauspicious start...

Path forward: accelerators and bubble chambers

47th Fermilab User's Meeting

- Nobel Prize
- Following Lederman et al.'s discovery of distinct neutrino states using the first accelerator-based neutrino beam, existing accelerators around the world added studies related to V interactions to their program
- First and foremost on agenda was to find the weak force carrier
 - unfortunately, only sensitive to $m_W < 10$ GeV.

Consolation prize: neutrino cross-section physics:

neutrino scattering on "free" targets $(H, {}^{2}H)$:

$$\frac{d\sigma}{dQ^2} \left(\begin{array}{c} \nu_l + n \to l^- + p\\ \bar{\nu}_l + p \to l^+ + n \end{array} \right) = \frac{M^2 G_F^2 \cos^2 \theta_c}{8\pi E_\nu^2} \left\{ A(Q^2) \pm B(Q^2) \frac{(s-u)}{M^2} + C(Q^2) \frac{(s-u)^2}{M^4} \right\}$$
Phys. Rep. 3, 261 (1972)

1988

11th June 2014

The Evolution of $v \sigma$'s

General approach to elastic interactions

The Evolution of ν σ 's

47th Fermilab User's Meeting

$$\frac{d\sigma}{dQ^2} \left(\begin{array}{c} \nu_l + n \to l^- + p \\ \bar{\nu}_l + p \to l^+ + n \end{array} \right) = \frac{M^2 G_F^2 \cos^2 \theta_c}{8\pi E_\nu^2} \left\{ A(Q^2) \pm B(Q^2) \frac{(s-u)}{M^2} + C(Q^2) \frac{(s-u)^2}{M^4} \right\}$$

Not-bad historical summary of quasi-elastic analysis technique (1964):

 $do(E_{\nu})/dq^2$ can be expressed in terms of the electromagnetic isovector form factors F_1 and F_2 , and the axial form factor F_A . Electron scattering experiments are consistent with $F_1 = F_2 = F_V = (1 + q^2/M_{17}^2)^{-2}$ with $M_V = 0.84$ GeV. Therefore $do(E_{\nu})/dq^2$ is determined except for F_A . If the parametric form $F_A = (1 + q^2/M_A^2)^{-2}$ is assumed, M_A can be determined from the experimental data.

This analysis yields
$$M_A = 1.0 + 0.35 - 0.20$$
 GeV

General approach to elastic interactions

The Evolution of $v \sigma$'s

47th Fermilab User's Meeting

9

11th June 2014

$$\frac{d\sigma}{dQ^2} \left(\begin{array}{c} \nu_l + n \to l^- + p \\ \bar{\nu}_l + p \to l^+ + n \end{array} \right) = \frac{M^2 G_F^2 cos^2 \theta_c}{8\pi E_\nu^2} \left\{ A(Q^2) \pm B(Q^2) \frac{(s-u)}{M^2} + C(Q^2) \frac{(s-u)^2}{M^4} \right\}$$

Not-bad historical summary of quasi alastic

Measuring M_A

47th Fermilab User's Meeting

M_A measured for decades in V Argonne (1969) Argonne (1973) **CERN (1977) Argonne** (1977) \star H or ²H **CERN (1979) BNL** (1980) 📌 BNL (1981) Argonne (1982) 📌 Fermilab (1983) **BNL** (1986) 📌 BNL (1987) **T**BNL (1990) Average 1.05 0.85 0.95 1.15 1.25 M_A [GeV]

J. Phys. G: Nucl. Part. Phys. 28 RI

scattering on mostly Z = 1 targets

- Global average to these data find $M_A = 1.03 \pm 0.02 \text{ GeV}$
 - values driven by light-target expt's
- With discovery of V oscillations (1998), suddenly require nuclear targets to get higher rates needed to nail osc. physics

1999 forewarning

The Evolution of ν σ 's

47th Fermilab User's Meeting

 Prompted by Super-K experiment: quasielastic (QE) scattering in nuclear environment could produce sizable yield increase

we see an enhacement of the total yield with respect to the free quasi-elastic around 20 %. This result points out the importance of a good evaluation of such neutrino induced *np-nh* excitations.

 These types of interactions could be responsible:

 Hints also present in electron scattering data

Phys. Rev. C65, 024002 (2002); Phys. Rev. C38, 1801 (1988)

Should have seen this coming

1999 forewarning

The Evolution of ν σ 's

47th Fermilab User's Meeting

Ρ

 Promį quasie 	Experiment	Target	Cut in Q^2 [GeV ²]	$M_A[GeV]$				
increa	K2K ⁴	oxygen	$Q^2 > 0.2$	1.2 ± 0.12				
with	K2K ⁵	carbon	$Q^2 > 0.2$	1.14 ± 0.11				
 These interac could respor 	MINOS ⁶	iron	no cut	1.19 ± 0.17				
	MINOS ⁶	iron	$Q^2 > 0.2$	1.26 ± 0.17				
	MiniBooNE ⁷	carbon	no cut	1.35 ± 0.17				
	MiniBooNE ⁷	carbon	$Q^2 > 0.25$	1.27 ± 0.14				
	NOMAD ⁸	carbon	no cut	1.07 ± 0.07				
TABLE I. Recent M_A measurements								

Ρ

- Hints also present in electron scattering data Phys. Rev. C65, 024002 (2002); Phys. Rev. C38, 1801 (1988)
 - Should have seen this coming

MiniBooNE in 2008

- Confirmation from independent groups that something like the np-nh interactions can account for observed enhancement
- Strong test of the underlying physics available with antineutrinos
 - probes a different mix of axial,
 vector σ pieces. How might
 this new process contribute to
 anti-neutrino CCQE in
 MiniBooNE?
 - $\overline{\nu}_{\mu}$ predictions differ by as much as factor of two!

Growing theoretical field

The Evolution of ν σ 's

47th Fermilab User's Meeting

- Intense theoretical activity (hundreds of papers) in last five years on this topic.
 Incomplete list:
 - Butkevich, arXiv:1204.3160
 - Lalakulich et al., arXiv:1203.2935
 - Mosel, arXiv:1204.2269, 1111.1732
 - Barbaro et al., arXiv:1110.4739
 - Giusti et al., arXiv:1110.4005
 - Meloni et al., arXiv:1203.3335, 1110.1004
 - Martini et al., arXiv:1202.4745, 1110.0221, 1110.5895, Phys. Rev C81, 045502 (2010)
 - Paz, arXiv:1109.5708
 - Sobczyk, arXiv:1201.3673, 1109.1081, 1201.3673
 - Nieves et al., arXiv:1204.5404, 1106.5374, 1110.1200, Phys. Rev. **C83**, 045501 (2011)
 - Bodek et al., arXiv:1106.0340
 - Amaro, et al., arXiv:1112.2123, 1104.5446, 1012.4265, Phys. Lett **B696**, 151 (2011)
 - Antonov, et al., arXiv:1104.0125
 - Benhar, et al., arXiv:1012.2032, 1103.0987, 1110.1835
 - Meucci et al., arXiv:1202.4312, Phys. Rev. C83, 064614 (2011)
 - Ankowski et al., Phys. Rev. C83, 054616 (2011)
 - Alvarez-Ruso, arXiv:1012.3871
 - Martinez et al., Phys. Lett **B697**, 477 (2011)

Dedicated bi-annual conference series, numerous workshops, online forum, etc.

- From first detection towards precision measurements of oscillatory and intranuclear behavior
- Nudging the field along with MiniBooNE antineutrinos
 - large A-dependent enhancements?
 - separating ν from $\overline{\nu}$ without magnets
 - topological cross sections
- Forward

Background complications

The Evolution of $\nu \sigma$'s

- Flip horn polarity to focus antineutrinos towards MiniBooNE.
- Immediate complication: V_µ parent π⁺ production ("wrong signs") mostly not constrained by dedicated HARP hadroproduction data
 - overall rate highly uncertain

47th Fermilab User's Meeting

47th Fermilab User's Meeting

- \blacktriangleright Other detectors employ magnetic field to separate CC ν_{μ} / $\overline{\nu}_{\mu}$
 - MiniBooNE unmagnetized, must use statistical techniques
- Never done before, had to get creative. General strategy: exploit asymmetries between v_{μ} , \overline{v}_{μ} interactions in the detector.
- Executed three complementary measurements based on:
 - I. $v_{\mu} CC\pi^{+}$ sample (exploits π^{-} nuclear capture)

$$\nu_{\mu} + N \rightarrow \overset{\checkmark}{\mu} N \overset{\checkmark}{\pi}^{+} \quad \bar{\nu}_{\mu} + N \rightarrow \overset{\checkmark}{\mu} N \overset{\times}{\pi}^{-} \qquad \checkmark: \text{observed}$$

2. μ -only and μ +e rates (exploits ~8% μ ⁻ nuclear capture)

$$\overset{\checkmark}{\mu}^{-} \xrightarrow{\times} e^{-} \nu \nu \qquad \qquad \overset{\checkmark}{\mu}^{+} \xrightarrow{\checkmark} e^{+} \nu \nu$$

3. backward scattering region in CCQE sample (dominated by v_{μ})

The Evolution of $\nu \sigma$'s

Analyses binned in energy as finely as allowed by statistics

 $v_{\mu}/\overline{v}_{\mu}$ separation results

47th Fermilab User's Meeting

- First demonstration of charge separation in non-magnetized environment
- V_{μ} contamination in \overline{V} mode measured to < 15%. Not bad for no magnetic field!
- Future FNAL customers?
 - NOvA
 - MINERVA
 - MicroBooNE, LBNE

 μ^{-} capture ~75% in argon, almost get event-by-event charge discrimination!

generated E_v (GeV)

The Evolution of $v \sigma$'s

47th Fermilab User's Meeting

Anne Schukraft ر (10⁻³⁸ cm² / nucleon) 9. 0 1 - 1 NUANCE (1 NUANCE (V ອັ<mark>ບ</mark> 0.4 MiniBooNE, C GGM, C₃H₈CF₃Br NOMAD, C 0.2 Serpukhov, Al * SKAT, CF_Br **10⁻¹** 10 **10**² E_v (GeV)

- MiniBooNE Cherenkov detector, exceeds at measuring lepton kinematics.
- \rightarrow >10⁵ neutrino events recorded by MiniBooNE, must exploit stats

- How is QE defined? How do you measure E_{v} ?
- Which outgoing particles are measured? Nucleon tracking efficiency?
- Much cleaner to report what you measure.

 $d^2\sigma$

Topological cross sections

The Evolution of $v \sigma$'s

47th Fermilab User's Meeting

- From first detection towards precision measurements of oscillatory and intranuclear behavior
- Nudging the field along with MiniBooNE antineutrinos
 - separating v from \overline{v} without magnets
 - topological cross sections
- Forward

FNAL and v cross sections

The Evolution of ν σ 's

47th Fermilab User's Meeting

- FNAL hugely invested into V physics. Primary goal oscillations, along with them many interesting cross-section physics processes will be accessible:
 - Intranuclear behavior → ~10-30% A-dependent yield increase? More outgoing nucleons than expected? Final-state interactions major challenge to disentangle.
 - Inelastic structure functions: EMC effect?
 - Detection of coherent v-nucleus interactions (largest SM σ yet to be observed!)
- Distribution of posted FNAL theses over time offers glimpse into how we are training next gen scientists:
 - clear and natural dominance of Tevatron experiments
 - steady growth of neutrino physics, in particular the litany of σ topics available

47th Fermilab User's Meeting

1964 CERN bubble chamber (500 liters, freon)

The Evolution of $v \sigma$'s

- Hand-scan of 459 events, separated into visible energy and by multiplicity
- For W boson search, found I event, predicted background also I event

- m_W > 1.8 GeV

• Showed for the first time $\sigma(E_v)$ linear with E_v

- resolving individual quarks, though discovery some yrs away

Fig. 1. Visible energy distribution of various event types.

Block et al., Phys. Rev. Lett. 12, 281 (1964)

• Able to peer in better detail to elastic cross sections...

The Evolution of $v \sigma$'s

Nucl. Instr. Meth. A599, 28 (2009)

- 6.1m radius sphere houses 800 tons of undoped mineral oil
- Primarily a Cherenkov detector, best at reconstructing leptons

 μ candidate

long track, filled-in Cherenkov sig.

e candidate short track, fuzzy Cherenkov sig.

- can predict V, anti-V flux at detector
- Dedicated π production data taken by HARP experiment (CERN)
 - "thin target" results used (5% λ), thick target data also taken and actively being analyzed
- Spline fit to these data (along with beamline geometry simulation) brings v flux uncertainty to ~9%
 - only valid for V parent π's constrained by these data important later!

 Absolute Φ knowledge nearly model independent

Sample composition

The Evolution of ν σ 's

47th Fermilab User's Meeting

• Due to axial-vector interference term in CCQE σ , $\overline{\nu}_{\mu}$ events expected to be much more forward-going compared to ν_{μ}

- perform simple fit to data in reconstructed energy bins

Uncertainties in μ^2 capture measurement

IIth June 2014

The Evolution of ν σ 's

47th Fermilab User's Meeting

TABLE IX: Uncertainty summary for this analysis. Included are the assumed errors on physics processes and their contributions to the total errors in α_{ν} and $\alpha_{\bar{\nu}}$ in the regions of reconstructed neutrino energy studied. The statistics of the ν -mode data enter the uncertainty from the calibration procedure described in Section IV B.

Course	Fractional	Uncertainty contribution to α_{ν}			Uncertainty contribution to $\alpha_{\bar{\nu}}$		
Source	uncertainty (%)	$E_{\nu}^{QE} < 0.9 \text{ GeV}$	$E_{\nu}^{QE} \ge 0.9 \text{ GeV}$	All	$E_{\nu}^{QE} < 0.9 \text{ GeV}$	$E_{\nu}^{QE} \ge 0.9 \text{ GeV}$	All
$ \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	10	0.07	0.08	0.07	0.00	0.00	0.00
$ar{ u}_{\mu}p o \mu^+ n$	20	0.04	0.02	0.03	0.20	0.20	0.21
$\nu_{\mu}(\bar{\nu}_{\mu})N \to \mu^{-}(\mu^{+})N\pi^{+}(\pi^{-})$	20	0.04	0.05	0.04	0.02	0.02	0.01
$ u_{\mu}(ar{ u}_{\mu})N ightarrow u_{\mu}(ar{ u}_{\mu})N$	30	0.00	0.00	0.00	0.00	0.00	0.00
$ u_{\mu}(ar{ u}_{\mu})N ightarrow u_{\mu}(ar{ u}_{\mu})N\pi^{0}$	25	0.02	0.01	0.01	0.01	0.01	0.01
$ u_{\mu}(\bar{ u}_{\mu})N ightarrow u_{\mu}(\bar{ u}_{\mu})N\pi^{\pm}$	50	0.05	0.02	0.01	0.03	0.03	0.01
$\mu^- ext{ capture}$	2.8	0.00	0.00	0.00	0.00	0.00	0.00
$\bar{\nu}$ -mode statistics	-	0.10	0.11	0.08	0.08	0.08	0.06
ν -mode statistics	-	0.04	0.05	0.04	0.03	0.03	0.03
All	-	0.14	0.16	0.12	0.22	0.22	0.22