

ASTA:

(Advanced Superconducting Test Accelerator)

Accelerator R&D Facility and Program

Vladimir Shiltsev Accelerator Physics Center, Fermilab ASTA Director (Interim)

ASTA Facility

Advanced Superconducting Test Accelerator

ASTA Accelerator R&D Facility

ASTA Facility

50 MeV ephotoinjector

CM₂

spectrometer and e- dump

150+ MeV e-

2.7 MeV p+/H-

IOTA

150 MeV e-

2.5 MeV p+

Fermilab

5 V.Shiltsev - ASTA: FNAL Users Mtg , 6/11/2014

Background

- Construction of ASTA and NML began in 2006 as part of the ILC/SRF R&D Program and later American Recovery and Reinvestment Act (ARRA).
- The Facility was motivated by the goal of building, testing and operating a complete ILC RF unit
- To date, an investment of ~\$90M has been made, including \$18M of ARRA funding, representing ~90% completion of the facility
- It was recognized early in the planning process that ASTA is
 of a great interest to the wider Advanced Accelerator R&D
 community because of its unique e- beam meeting the ILC
 performance parameters and a small research storage ring,
 capable to operate with protons and electrons.

2013: ASTA Proposal (FNAL-TM-2568)

97 co-authors from 18 institutions:

- 24 APS Fellows
- 10 Accelerator Prize winners
- >25% young researchers

31 proposals & LOIs:

- 13 most developed, high-impact proposals presented in in Sec.8
- 18 proposals and LOIs in Attachme

At three ASTA experimental areas

- Exp Area 1 (50 MeV) (14)
- Exp Area 2 (300-800 MeV) (18)
- Exp Area 3 (IOTA Ring) (7)

Broad spectrum of proponents:

- University groups
- SBIR companies
- Large National Laboratories
- Detector R&D groups
 - National Programs, Int'l

R&D Opportunities at ASTA

Intensity Frontier of Particle Physics

- Nonlinear, integrable optics
- Space-charge compensation

Energy Frontier of Particle Physics

- Optical Stochastic Cooling
- Advanced phase-space manipulation
- Flat beam-driven DWFA in slabs

perconducting celerators for Science

Beam-based system tests with high-gradient cryomodules Long-range wakes
Ultra-stable operation of SCLs

Novel Radia on Sources

- High-brightness ray channeling
- Inverse Comptor Gamma Ray source

DOE GARD Review – March 2013

Stewardship and Applications

- Generation and Manipulation Ultra-Low Emittance Beams for Future Hard X-ray FELs
- XUV FEL Oscillator

DOE Facilities
Review –
October 2013

IOTA Ring: to test new beam methods

Integrable Optics and Space-Charge Compensation

In a traditional linear lattice, beam core mismatch oscillations quickly drive particles into the halo

D.Bruhweiler, et al Phys Rev ST-AB (2014)

For integrable nonlinear magnetic fields, nonlinear decoherence suppresses halo formation

THE UNIVERSITY OF

CHICAGO

IOTA Collaboration

Massachusetts Institute of Technology

Role of ASTA

- <u>Leading</u> DOE OHEP Accelerator R&D facility for:
 - -medium-term research, to bring new concepts to practice which can be used for the design of <u>a new low-cost IF facility</u>
 - long-term, exploratory research aimed at developing advanced concepts for acceleration and beam manipulation
 - the training of accelerator physicists, engineers, and technologists

2nd ASTA Users Meeting, FNAL 06/9-10/14

PhotoInjector – full Q/macropulse at 5 MeV!

- Full RF power, ~3000 high charge bunches in 1ms
- (ILC specs: 3000 bunches, 1 ms, 3.2 nQ /bunch)

(Left) 4 June 2014: 3000
Electron bunches from the
ASTA Photoelectron Gun as
seen on the Faraday cup
downstream of the gun.
(Below) YAG screen image of
first electrons from a Cs2Te
cathode

1.3 GHz SRF Cryomodule – Best in the World!

June 4th, 2014: last cavity (#8) commissioned

16

Meets ILC specifications: 31.5 MV/m 1ms 5 Hz

IOTA Ring – Accumulation of Subsystems

Stands, vacuum system, quads, dipoles (in work), RF, PSs, etc

ASTA Research Program Begins

1st beam experiment - Xray Radiator (NIU, Vanderbuilt)- 2014

Auralee Morin of Colorado

Ayaka Kuramoto and Mathieu

Dr. Chris Prokop (NIU) — the first PhD based on ASTA-related research!

June 2014: Auralee Morin (CSU, right) and Summer Interns Kevin Kenny (U.Illinois) and Silva Straughter (East Mich.Un.)

milab

ASTA Technical Plan

By the end of FY14:

- Complete 50 MeV injector and bring beam to 50 MeV dump
- 20-50 MeV beam to the 1st experiment (NIU/vanderbilt)
- Begin installation high-energy beamline from CM2 to HE dump

• FY15:

- finish HE beam line installation
- beam commissioning of CM2
- Finish construction/fabrication of IOTA elements

• FY16:

- Finish IOTA installation and commissioning, 150 MeV e-beam to IOTA
- Move and install the HINS proton injector (50% completion)

• FY17:

- HINS commissioned, inject protons in IOTA
- Full accelerator research program at IOTA (first with electrons)

ASTA: Summary

- Unique facility for transformative accelerator R&D
 - Will shape the next generation facilities for intensity frontier / neutrino research
- VERY substantial investment to date (\$\$, people)
- Great technical progress, esp. recently :
 - Photoinjector and SRF Cryo Module work, IOTA
- Beam to the 1st experiment in 2014
- Aggressive plans for FY15-17 (to finish construction)
- ASTA collaboration grows more Universities, Int'l partners, SBIRs, other labs, individuals, ...

We are committed to make ASTA a success, and Invite YOU to join the team!

ASTA Offers Unique Research Opportunities

