LHC and CMS Upgrades

Jim Hirschauer Fermilab

47th Annual Fermilab Users Meeting June 11, 2014

Expected luminosity evolution

	Upgrade	Improves
LS1	Repair superconducting splices	L
LS2	Injector and collimation upgrades	L∝ N/ε,
LS3	Collision region apertures and crab cavities	L^{\propto} geometric factor/ β^*

The main 2013-14 LHC consolidations

F Bordry – LHCP – June 2014

13TeV collisions to start in April 2015

s=14TeV

Upgrade L1 p_ > 25 GeV (relaxed)

Upgrade L1 p_ > 25 GeV (isolated)

Current L1 p_ > 44 GeV

CMS Simulation 2012

GeV)

p_40(

0.8

0.6

0.5

CMS phase 1 upgrade motivation

- **PU** will dramatically reduce tracking efficiency.
- Increasing trigger thresholds and decreasing efficiency from PU will affect SM objects.
- **Radiation damage** will cause light yield \rightarrow 0 in first layers of endcap hadron calorimeter.

Pixel detector

- additional layers
- less material
- improved readout chip

CMS phase 1 upgrade

Forward calorimeter

- New multianode PMTs
- New frontend+backend electronics

Hadron calorimeter (HCAL)

- New SiPM photodetectors
- New frontend+backend electronics

Trigger

 Full granularity of muon & calo systems in level-1 hardware trigger (L1)

Pixel detector upgrade

- Maintain low data loss in presence of 50 pileup (PU) with new readout chip.
- Additional layer in barrel and forward systems.
- Radiation tolerance to 500 fb⁻¹
 [~1.5e15/cm² 1MeV neutron equivalent].
- Less material in tracking volume.

Hadron calorimeter upgrade

Barrel and endcap calorimeters

- Replace HPD photodetectors (anomalous noise + drifting response) with SiPMs.
 - Small, low voltage, 100-400x higher gain, 3x higher PDE than HPD.
- Allows longitudinal segmentation and radiation damage calibration (depth dependent).

Forward calorimeter

 Multi-anode PMTs and timing information in readout allows rejection of beam backgrounds.

Backend electronics

- Higher speed µTCA to handle increased data volume.
- redundancy to improve robustness of system

KETEK SiPM, T=24.5 C

L1 trigger upgrade

- Mitigate through improved:
 - muon triggers: μ p_T resolution w/ full information from 3 systems in track-finding.
 - calorimeter triggers: e/γ/μ isolation
 & jet/τ resolution w/ PU subtraction
- Increased system flexibility and algorithm sophistication require high bandwith optical links, larger FPGAs, µTCA telecom standard electronics.
- Build/commission in parallel with current system.

Trigger efficiency @ 2e34 cm⁻²s⁻¹

Channel	Current	Upgrade
W(ev),H(bb)	37.5%	71.5%
W($\mu\nu$),H(bb)	69.6%	97.9%
VBF H($\tau\tau(\mu\tau)$)	19.4%	48.4%
VBF H($\tau\tau(\epsilon\tau)$)	14.0%	39.0%
VBF H($\tau\tau(\tau\tau)$)	14.9%	50.1%
H(WW(eevv))	74.2%	95.3%
H(WW(μμνν))	89.3%	99.9%
H(WW(eμνν))	86.9%	99.3%
$H(WW(\mu e \nu \nu))$	90.7%	99.7%

Maintain **lepton thresholds** below W peak, recover **tau trigger** at high PU.

High luminosity LHC

Interaction region quadrupoles

		Туре	Material	Field/Gradient (T)/(T/m)	Aperture (mm)	Length (m)
Ø	Q1,Q3 Q2	Single aperture	Nb ₃ Sn	<mark>(12.1)</mark> 140	150	8 6.7

- Radiation damage require magnet replacement.
- Increased aperture needed for $\beta^* 60 \rightarrow 15$ cm.
- Primary LARP (BNL, FNAL, LBNL, and SLAC) contribution.
- Of and Q3 will probably each consist of 2 ~4.5m long magnets for a total of 20 quadrupoles.

G Apollinari - Nov 2013

Ten years of R&D

QS01

LARP Subscale Quad. SQ 0.3 m long 110 mm bore 2004-2006

> Technology Quadrupole TQS - TQC 1 m long 90 mm bore 2006-2010

> > Long Quadrupole LQS 3.7 m long 90 mm bore 2007-2012

High Field Quadrupole HQ 1 m long 120 mm bore 2008-2014

Long Racetrack LRS 3.6 m long No bore 2006-2008

G Apollinari – Nov 2013

G Apollinari – Nov 2013

CMS phase 2 upgrade motivation

Tracker

- Radiation tolerant high granularity – less material
- tracks in hardware trigger
- Coverage to $|\eta| \sim 4$

CMS phase 2 upgrade

Endcap calorimeters

- Radiation tolerant higher granularity
- Study coverage to $|\eta| \sim 4$

Trigger/DAQ

- •L1 w/ tracks @ 1 MHz
- Latency >= 10 us
- HLT output 10 kHz

Tracker + track trigger

Strip tracker

• Double sensor modules provide 40MHz trigger info for tracks w/ $p_T > 2$ GeV.

2 backend approaches based on input stubs

- Associative memory chips
- Pure FPGA

Pixel detector

- Same as phase1, but w/ 10 disks to $|\eta| \sim 4$.
- Small pix 30x100µm; thin sensors 100µm

5 cm long strips (both sides) 90 µm pitch P = 2.72 W ~ 92 cm² active area

2.4 cm long strips + pixels 100 μm pitch P = 5.01 W ~ 44 cm² active area

Trigger tracks selection in FE

Endcap calorimeters

- Survive ~10 Mrad at $|\eta|$ ~4.
- Maintain/improve reco of VBF jets, tau, boosted top/W/Z at high PU.
- Take advantage of "particle flow" reconstruction.

Trigger & DAQ

Level 1

- Upgrade of ECAL barrel electronics allows $10 \ \mu s$ latency.
- 20 μ s latency achievable with changes to CSC readout.
- 1MHz L1 rate to preserve menu for regions where track trigger is less efficient.
- Full crystal granularity at L1 for track match

High level trigger (HLT) & DAQ

- 1 MHz into HLT
- 10 kHz into DAQ

Moore's law over 10 years expected to allow these improvements.

Trigger, Threshold	Algorithm	Rate reduction
Single Muon, 20 GeV	Improved Pt, via track matching	~ 13 (central region)
Single Electron, 20 GeV	Match with cluste	 > 6 (current granularity) >10 (crystal granularity) (η < 1)
Single Tau, 40 GeV	CaloTau – track matching + tracker isolation	O(5)
Single Photon, 20 GeV	Tracker isolation	40 %

Status & conclusion

- HL-LHC upgrades given high priority by P5.
- CMS phase 1 upgrades CD23 review in August 2014.
- CMS phase 2 upgrade technical proposal coming in September 2014.
- LHC+experiments is a global effort, but the US, LARP, and Fermilab play critical roles in all phases and should strive to continue leading.

Additional Material

LS2 : LHC Injector Upgrades

LINAC4 – PS Booster:

- H⁻ injection and increase of PSB injection energy from 50 MeV to 160 MeV, to increase PSB space charge threshold
- New RF cavity system, new main power converters
- Increase of extraction energy from 1.4 GeV to 2 GeV

PS:

- Increase of injection energy from 1.4 GeV to 2 GeV to increase PS space charge threshold
- Transverse resonance compensation
- New RF Longitudinal feedback system
- New RF beam manipulation scheme to increase beam brightness

SPS

- Electron Cloud mitigation strong feedback system, or coating of the vacuum system
- Impedance reduction, improved feedbacks
- Large-scale modification to the main RF system

Pixel upgrade (1)

Pixel upgrade (2)

Table 2.1: Values of dynamic data loss used in the simulations of the current and upgrade pixel detector operating at 1×10^{34} cm⁻²s⁻¹ (25 ns crossing time) and 2×10^{34} cm⁻²s⁻¹ (25 ns and 50 ns crossing time) for each barrel layer and forward disk and for particular bunch crossing intervals.

Detector	Radius	% Data loss for $(cm^{-2}s^{-1} @ ns)$		
	(cm)	1×10^{34} @ 25	2×10^{34} @ 25	$2 \times 10^{34} @ 50$
		Current dete	ector	
BPIX1	4.4	4.0	16.0	50.0
BPIX2	7.3	1.5	5.8	18.2
BPIX3	10.2	0.7	3.0	9.3
FPIX1 and 2		0.7	3.0	9.3
Upgrade detector				
BPIX1	3.0	1.19	2.38	4.76
BPIX2	6.8	0.23	0.46	0.93
BPIX3	10.2	0.09	0.18	0.36
BPIX4	16.0	0.04	0.08	0.17
FPIX1-3		0.09	0.18	0.36

Pixel upgrade (4)

Figure 2.2: The amount of material in the pixel detector shown in units of radiation length (left), and in units of nuclear interaction length (right) as a function of η ; this is given for the current pixel detector (green histogram), and the Phase 1 upgrade detector (black points). The shaded region at high $|\eta|$ is outside the region for track reconstruction.

Muon trigger upgrade (4)

- Sophisticated p_T assignment (studied with BDTs) based on expanded list of information over current CSCTF
 - Tail Clipping: if a variable, e.g. Δφ₁₂, is in 5% (10%, 15%) tail, demote p_T to most probable value for given Δφ₁₂
 - Repeat over all 10 variables, report lowest demoted p_T
- Sharpens rate curve, factors of 2-3 rate reduction for modest efficiency loss (~5%, and programmable)

LS 1 from 16th Feb. 2013 to Dec. 2014

F Bordry – LHCP – June 2014

LHC upgrades: Maximize \mathcal{L} , minimize $\langle \mathrm{PU} \rangle$

$\mathcal{L} = rac{f \cdot k_b \cdot N_b^2}{4\pi\sigma^2}$ (head–on beams)	
$\mathcal{L} = \frac{1}{4\pi} \left(\frac{E_{\text{beam}}}{m_{\text{p}}} \right) (fk_b N_b) \left(\frac{N_b}{\epsilon_{\text{n}}} \right) \left(\frac{1}{\beta^*} \right) F(\theta_c, \sigma_z, \sigma)$	$ \begin{array}{ll} N_b &= \text{protons / bunch } (1.6 \times 10^{11}) \\ \epsilon_n &= \text{normalized emittance } (2.5 \ \mu\text{m}) \\ \beta^* &= \text{optics parameter } (60 \ \text{cm}) \end{array} $
$\langle \mathrm{PU} \rangle = rac{\mathcal{L} \cdot \sigma_{\mathrm{pp}}^{\mathrm{inelastic}}}{k_b \cdot f}$ (for given L)	$ \begin{array}{ll} F &= \text{geometric factor (40-80\%)} \\ \theta_c &= \text{crossing angle (290 μrad)} \\ \sigma_z &= \text{bunch length (7.55 cm)} \end{array} $

Potential Improvement	Challenges	Solution	When	
$\langle { m PU} angle \propto 1/k_b$ ${\cal L} \propto f k_b N_b$	e ⁻ collimation, dump, long range collisions	Low emittance techniques with existing injectors	Now	
$\mathcal{L} \propto E_{ m beam}$	dipole splice resistance	splice consolidation	2013–14 (LS1)	
$\mathcal{L} \propto N_b/\epsilon_n$	space charge in injectors, e⁻	increase E of injectors, SPS coating	2018–19 (LS2)	
${\cal L} \propto 1/eta^*$	aperture near IPs	new IP magnets	2023–25	
$\mathcal{L} \propto F$	crossing angle	crab cavities	(HL–LHC)	