

Beyond the Standard Model Results from the LHC 47th Annual Fermilab Users Meeting

David W. Miller

Enrico Fermi Institute

June 11th, 2014

D.W. Miller (EFI, Chicago)

The Search for Cracks in the Standard Model

Outline

1 The Search for Cracks in the Standard Model

Overview of the BSM Searches in ATLAS and CMS

3 Key analyses in the search for BSM Physics

4 Looking ahead to Run II

D.W. Miller (EFI, Chicago)

Trying to crack the Standard Model

New York Times, Thompson, 2006

D.W. Miller (EFI, Chicago)

The Search for Cracks in the Standard Model LHC Quest for BSM Physics

Trying to crack the Standard Model

New York Times, Thompson, 2006

Despite its amazing complexity, ATLAS and CMS are hard at work searching for cracks in the Standard Model using novel methods and precision searches.

D.W. Miller (EFI, Chicago)

Overview of the BSM Searches in ATLAS and CMS

Outline

Overview of the BSM Searches in ATLAS and CMS

3 Key analyses in the search for BSM Physics

4 Looking ahead to Run II

D.W. Miller (EFI, Chicago)

Non-SUSY BSM Searches in CMS

Overview of the BSM Searches in ATLAS and CMS

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[ft	-1]	Mass limit		Reference
Inclusive Searches	$ \begin{split} & MSUGPACMSSM \\ & MSUGPACMSSM \\ & MSUGPACMSSM \\ & \phi_{1}, \phi_{2}, \phi_{1}^{2}, \phi_{1}^{2}, \phi_{2}^{2}, \phi_{1}^{2}, \phi_{2}^{2}, \phi_{2}^{2$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.3 4.8 4.8 5.8 10.5	φ. δ δ δ φ <td>1.2 TeV 1.2 TeV 1.1 TeV 740 GeV 1.1 TeV 1.1 TeV 1.2 TeV 1.2 TeV 619 GeV 699 GeV 699 GeV</td> <td>¥ m(n)-m(1) any m(2) m(1)-0.Gav' m(1)-0.Gav' m(1)-0.Gav(m(1)-m(2))(m(1)) m(1)-20.Gav(m(1)-m(2)) bay-18 m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav'</td> <td>ATLAS-CONF-2013-04 ATLAS-CONF-2013-06 1308.1841 ATLAS-CONF-2013-04 ATLAS-CONF-2013-04 ATLAS-CONF-2013-06 ATLAS-CONF-2013-06 ATLAS-CONF-2014-06 ATLAS-CONF-2014-10 ATLAS-CONF-2012-14 ATLAS-CONF-2012-14 ATLAS-CONF-2012-14</td>	1.2 TeV 1.2 TeV 1.1 TeV 740 GeV 1.1 TeV 1.1 TeV 1.2 TeV 1.2 TeV 619 GeV 699 GeV 699 GeV	¥ m(n)-m(1) any m(2) m(1)-0.Gav' m(1)-0.Gav' m(1)-0.Gav(m(1)-m(2))(m(1)) m(1)-20.Gav(m(1)-m(2)) bay-18 m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav' m(1)-30.Gav'	ATLAS-CONF-2013-04 ATLAS-CONF-2013-06 1308.1841 ATLAS-CONF-2013-04 ATLAS-CONF-2013-04 ATLAS-CONF-2013-06 ATLAS-CONF-2013-06 ATLAS-CONF-2014-06 ATLAS-CONF-2014-10 ATLAS-CONF-2012-14 ATLAS-CONF-2012-14 ATLAS-CONF-2012-14
§ med.	$\overline{\tilde{s}} \rightarrow b \overline{b} \overline{\tilde{s}}_{1}^{0}$ $\overline{\tilde{s}} \rightarrow t \overline{\tilde{s}}_{2}^{0}$ $\overline{\tilde{s}} \rightarrow t \overline{\tilde{s}}_{1}^{0}$ $\overline{\tilde{s}} \rightarrow b \overline{\tilde{s}}_{1}^{0}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	100 100 100	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	m($\tilde{\ell}_{1}^{0}$)<600 GeV m($\tilde{\ell}_{1}^{0}$)<350 GeV m($\tilde{\ell}_{1}^{0}$)<400 GeV m($\tilde{\ell}_{1}^{0}$)<400 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
direct production	$ \begin{array}{c} \overset{b}{\rightarrow} i, \ b_{1} \rightarrow b_{2} k_{1}^{0} \\ \overset{b}{\rightarrow} b_{1} , \ b_{1} \rightarrow b_{1}^{0} \\ \overset{c}{\rightarrow} b_{1} \\ \overset{c}{\rightarrow} b_{1} \\ \overset{c}{\rightarrow} i, \ b_{1} \rightarrow b_{1}^{0} \\ \overset{c}{\rightarrow} i, \ i, \ b_{1} \rightarrow b_{1}^{0} \\ \overset{c}{\rightarrow} i, \ i, \ b_{1} \rightarrow b_{1}^{0} \\ \overset{c}{\rightarrow} i, \ i, \ b_{1} \rightarrow b_{1}^{0} \\ \overset{c}{\rightarrow} i, \ b_{1} \rightarrow b_{1} \rightarrow b_{1}^{0} \\ \overset{c}{\rightarrow} i, \ b_{1} \rightarrow b$	0 $2 e, \mu$ (SS) $1-2 e, \mu$ $2 e, \mu$ $2 e, \mu$ 0 $1 e, \mu$ 0 $1 e, \mu$ 0 $3 e, \mu$ (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 cono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3		705420 GeV 275-500 GeV 136-210 GeV 215-530 GeV 215-530 GeV 200-510 GeV 200-510 GeV 200-510 GeV 150-500 GeV 150-500 GeV	(ရင်)-30 GeV (ရင်)-22 (ရင်) (ရင်)-55 GeV (ရင်)-56 GeV (ရင်)-30 GeV (ရင်)-90 GeV (ရင်)-4 (ရင်)-6 GeV (ရင်)-6 GeV (ရင်)-6 GeV (ရင်)-55 GeV (ရင်)-55 GeV (ရင်)-55 GeV	1308.2631 ATLAS-CONF-2013.00 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013.02 ATLAS-CONF-2013.02 ATLAS-CONF-2013.02 1403.5222
direct	$\begin{array}{l} \tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{-\ell}\ell\tilde{\kappa}_{1}^{0} \\ \tilde{\lambda}_{1}^{-1}\tilde{\kappa}_{1}^{-1}\tilde{\kappa}_{1}^{-\ell}\ell\tilde{\kappa}_{1}^{0} \\ \tilde{\kappa}_{1}^{-1}\tilde{\kappa}_{1}^{-1}\tilde{\kappa}_{1}^{-\ell}\tilde{\kappa}_{1}^{\ell}\tilde{\kappa}_{1}^{0} \\ \tilde{\kappa}_{1}^{+1}\tilde{\kappa}_{1}^{-2}\tilde{\kappa}_{1}^{-\ell}\tilde{\kappa}_{1}^{\ell}\ell_{1}^{\ell}(\tilde{\nu}_{1})\tilde{\kappa}_{1}^{\ell}\tilde{\kappa}_{1}^{\ell}(\tilde{\nu}_{1}) \\ \tilde{\kappa}_{1}^{+1}\tilde{\kappa}_{2}^{-2}\tilde{\kappa}_{1}^{-\ell}\tilde{\kappa}_{1}^{\ell}\ell_{1}^{\ell}(\tilde{\nu}_{1})\tilde{\kappa}_{1}^{\ell}\tilde{\kappa}_{1}^{\ell} \\ \tilde{\kappa}_{1}^{+1}\tilde{\kappa}_{2}^{-2}\tilde{\kappa}_{1}^{\ell}\tilde{\kappa}_{1}^{\ell}\tilde{\kappa}_{1}^{\ell} \\ \tilde{\kappa}_{1}^{+1}\tilde{\kappa}_{2}^{-2}\tilde{\kappa}_{1}^{\ell}\tilde{\kappa}_{1}^{\ell}\tilde{\kappa}_{1}^{\ell} \end{array}$	2 e, µ 2 e, µ 2 τ 3 e, µ 2-3 e, µ 1 e, µ	0 0 0 0 2 b	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	1 X	90-325 GeV 140-455 GeV 180-330 GeV 700 GeV 420 GeV 285 GeV	$\begin{split} m(\tilde{\tau}_{1}^{1}) = 0 \ \text{GeV} \\ m(\tilde{\tau}_{1}^{1}) = 0 \ \text{GeV} \ m(\tilde{c}, \tilde{v}) = 0.5(m(\tilde{\tau}_{1}^{1}) + m(\tilde{\tau}_{1}^{2})) \\ m(\tilde{\tau}_{1}^{1}) = 0 \ \text{GeV} \ m(\tilde{c}, \tilde{v}) = 0.5(m(\tilde{\tau}_{1}^{1}) + m(\tilde{\tau}_{1}^{2})) \\ m(\tilde{\tau}_{1}^{1}) = m(\tilde{\tau}_{1}^{1}) = 0, \ m(\tilde{c}, \tilde{v}) = 0.5(m(\tilde{\tau}_{1}^{1}) + m(\tilde{\tau}_{1}^{2})) \\ m(\tilde{\tau}_{1}^{1}) = m(\tilde{\tau}_{1}^{1}), m(\tilde{\tau}_{1}^{1}) = 0, \ \text{suptors decoupled} \\ m(\tilde{\tau}_{1}^{1}) = m(\tilde{\tau}_{1}^{1}), m(\tilde{\tau}_{1}^{1}), m(\tilde{\tau}_{1}^{1}), \ m(\tilde{\tau}_{1}^{1}) = 0, \ \text{suptors decoupled} \end{split}$	1403.5294 1403.5294 ATLAS-CONF-2013.028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013.090
particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{+}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}, \log -ived \tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 ,μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	$\hat{\chi}_1^{\dagger}$ $\hat{\tilde{g}}$ $\hat{\chi}_1^{\dagger}$ \hat{q}	270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{n}) \cdot m(\tilde{k}_{1}^{0}) = 160 \; \text{MeV}, \; r(\tilde{k}_{1}^{n}) = 0.2 \; \text{ns} \\ m(\tilde{k}_{1}^{n}) = 100 \; \text{GeV}, \; 10 \; \mu \text{s} < r(\tilde{\chi}) < 1000 \; \text{s} \\ 10 < \tan \beta < 50 \\ 0.4 < r(\tilde{k}_{1}^{n}) < 2 \; \text{ns} \\ 1.5 < < r < 156 \; \text{mm}, \; \text{BR}(\mu) = 1, \; m(\tilde{k}_{1}^{0}) = 108 \; \text{GeV} \end{array}$	ATLAS-CONF-2013-065 ATLAS-CONF-2013-055 ATLAS-CONF-2013-058 1304-6310 ATLAS-CONF-2013-059
APV	$\begin{array}{l} LFV pp \rightarrow \tilde{\mathbb{V}}_{\tau} + X, \tilde{\mathbb{V}}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{\mathbb{V}}_{\tau} + X, \tilde{\mathbb{V}}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{1}, \tilde{\mathcal{K}}_{1}^{+} \rightarrow W \tilde{\mathcal{K}}_{1}^{0} \tilde{\mathcal{K}}_{1}^{0} \rightarrow e \tilde{\mathbb{V}}_{p}, e \mu \tilde{\mathbb{V}}_{e} \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{1}, \tilde{\mathcal{K}}_{1}^{+} \rightarrow W \tilde{\mathcal{K}}_{1}^{0}, \tilde{\mathcal{K}}_{1}^{0} \rightarrow \tau \tau \tilde{\mathbb{V}}_{e}, e \tau \tilde{\mathbb{V}}_{\tau} \\ \tilde{\mathcal{g}} \rightarrow q q q \\ \tilde{\mathcal{g}} \rightarrow \tilde{q}_{1}t, 1, \rightarrow bs \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	7 jets 6-7 jets 0-3 b	· Yes Yes Yes · Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	Pr Pr \$.8 \$.1 \$.1 \$.2 \$.2 \$.2 \$.2 \$.2 \$.2 \$.2 \$.2 \$.2 \$.2	1.61 TeV 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	$\begin{array}{c} \lambda_{111}'=0.10, \lambda_{122}=0.05\\ \lambda_{111}'=0.10, \lambda_{122}=0.0.05\\ m(q_1^2)=m(q_1^2), \alpha_{222}=c.1 \mbox{ mm}\\ m(q_1^2)=300 \mbox{ GeV}, \lambda_{122}>0\\ m(q_1^2)=300 \mbox{ GeV}, \lambda_{122}>0\\ BR(r)=BR(b)=BR(c)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-03 ATLAS-CONF-2013-03 ATLAS-CONF-2013-097 ATLAS-CONF-2013-007
Umer	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	2 e, µ (SS) 0	4 jets 2 b mono-jet	Yes Yes	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 350-800 GeV 704 GeV	incl. limit from 1110.2693 $m(\chi){<}80~{\rm GeV}, limit of{<}687~{\rm GeV} \mbox{ for D8}$	1210.4826 ATLAS-CONF-2013-05 ATLAS-CONF-2012-14
	√s = 7 TeV full data	√s = 8 TeV artial data	$\sqrt{s} = full$	8 TeV data			10 ⁻¹ 1	Mass scale [TeV]	

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1/r theoretical signal cross section uncertainty.

D.W. Miller (EFI, Chicago)

BSM results from the LHC – 47th FNAL Users Meeting

ATLAS Preliminary

 $\int f dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

- Heavy resonances decaying to W/Z/H pairs
- Inclusive strongly produced SUSY scenarios
- Vector-like quarks top partners
- *R*-parity violating (RPV) SUSY and long-lived scenarios

- Heavy resonances decaying to W/Z/H pairs
- Inclusive strongly produced SUSY scenarios
- Vector-like quarks top partners
- *R*-parity violating (RPV) SUSY and long-lived scenarios

- Heavy resonances decaying to W/Z/H pairs
- Inclusive strongly produced SUSY scenarios
- Vector-like quarks top partners
- *R*-parity violating (RPV) SUSY and long-lived scenarios

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	Mass limit	в.
	MSUGRA/CMSSM MSUGRA/CMSSM	0 1 e, µ	2-6 jets 3-6 jets	Yes Yes	20.3 20.3	4.2 1.7 TeV δ 1.2 TeV	8-
ch es	MSUGRA/CMSSM $\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0}$	0	7-10 jets 2-6 jets 2-6 intr	Yes Yes	20.3 20.3	ž 1.1 TeV 7 740 GeV 1.2 TeV	B'-
Sear	$g_{\overline{s}}, g \rightarrow qq_{\overline{s}} $ $g_{\overline{s}}, g \rightarrow qq_{\overline{s}} $ $g_{\overline{s}}, g \rightarrow qq(\ell \ell / \ell \nu / \nu \nu) \overline{\chi}_{1}^{0}$	1 e, μ 2 e, μ	3-6 jets 0-3 jets	Yes	20.3 20.3	ž 1.18 TeV ž 1.18 TeV ž 1.12 TeV	B'-
clusive	GMSB (2 NLSP) GMSB (2 NLSP) GGM (bino NLSP)	2 e, μ 1-2 τ 2 γ	2-4 jets 0-2 jets	Yes Yes Yes	4.7 20.7 20.3	ž 1.24 TeV ž 1.4 TeV ž 1.28 TeV	
ŝ	GGM (wino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP)	1 e, μ + γ γ 2 e, μ (Z)	1 <i>b</i> 0-3 jets	Yes Yes	4.8 4.8 5.8	š 619 GeV š 900 GeV č 500 GeV	B
Éн.	Gravitino LSP ⊋→bĎ ² 1	0	mono-jet 3 b	Yes	10.5 20.1	F ^{1/2} scale 645 GeV ž 1.2 TeV	B'-
3 rd ge § mø	$\overline{s} \rightarrow t \overline{t} \overline{t}_{1}^{0}$ $\overline{s} \rightarrow t \overline{t} \overline{t}_{1}$ $\overline{s} \rightarrow b \overline{s} \overline{t}_{1}^{1}$	0 0-1 e,μ 0-1 e,μ	7-10 jets 3 b 3 b	Yes Yes Yes	20.3 20.1 20.1	2 1.1 TeV 2 1.34 TeV 2 1.3 TeV	ir+N
	-					t+MI	IET,
						54	+ME

Mass limit

270 GeV

230 GeV

1.2 TeV

1.3 TeV

1.4 TeV

1.1 TeV

1.18 TeV

1.24 Te

1.28 TeV

1.2 TeV

1.34 TeV

1.3 TeV

1.1 TeV

1.0 TeV

916 GeV

1.1 TeV

832 GeV

1.12 TeV

740 GeV

619 GeV

- Heavy resonances decaying to W/Z/H pairs
- Inclusive strongly produced SUSY scenarios
- Vector-like quarks top partners

 e, μ, τ, γ Jets E_{-}^{miss} [$\pounds dt$ [fb⁻¹]

Vins

Yes 20.3

Yes

Yes 4.8

Ves 4.8

Yes 5.8

Yes 20.1

Ves

Yes 4.7

Yes 20.7

Yes 20.7

2-6 jets

7-10 jets

2-6 ints Yes 20.3

2-4 jets Yes 4.7

mono-jet Yes 10.5

3 b

7 jets

1 c. µ 3-6 jets

0 2-6 jets Yes 20.3

2 e, µ 0-3 jets

1-2 7 0-2 jets

 2γ

2 e, µ (Z) 0-3 jets

0 7-10 jets Yes 20.3

0-1 e.µ

0-1 e.µ

Disapp. trk 1 jet

0 1-5 jets Yes 22.9

 $1-2 \mu$

2γ

1 µ, displ. vtx

4 e. µ

0 6-7 jets

2 e. u (SS) 0-3 b

• *R*-parity violating (RPV) SUSY and long-lived scenarios

20.3

20.3

20.3

20.3

20.7

20.3

20.1

20.1

20.3

15.9

20.3

4.6

4.7

20.3

Yes 20.7

Excluded Mass (TeV)

D.W. Miller (E	FI, Chicago)
----------------	--------------

Model

MSUGRA/CMSSM

MSUGRA/CMSSM

MSUGRA/CMSSM

 $\tilde{\chi}\tilde{\chi}, \tilde{\chi} \rightarrow qq \tilde{\chi}_{1}^{*} \rightarrow qq W^{*} \tilde{\chi}_{1}^{0}$

 $\bar{g}\bar{g}, \bar{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\bar{\chi}_1^0$

GMSB (*l* NLSP)

GMSB (7 NLSP)

Gravitino I SP

ğ→tīΫ

2→t12

s_hī

8->999

 $\tilde{r} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$

GGM (bino NLSP)

GGM (wino NI SP)

GGM (higgsino NLSP)

GGM (higgsing-bing NLSP)

Direct 8187 prod., long-lived 81

GMSB, stable $\hat{\tau}, \hat{\chi}_1^0 \rightarrow \hat{\tau}(\hat{e}, \hat{\mu}) + \tau(e, \mu)$

Stable, stopped § R-hadron

GMSB, $\hat{\chi}_{1}^{0} \rightarrow \gamma G$, long-lived $\hat{\chi}_{1}^{0}$

LFV $pp \rightarrow \hat{y}_{r} + X, \hat{y}_{r} \rightarrow e + \mu$

LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow c(\mu) + \tau$

 $\hat{x}^+_1\hat{x}^-_1, \hat{x}^+_1 \rightarrow W\hat{x}^0_1, \hat{x}^0_1 \rightarrow ee\hat{y}_0, eu\hat{y}_1$

 $\hat{\chi}_{1}^{+}\hat{\chi}_{1}^{-}, \hat{\chi}_{1}^{+} \rightarrow W\hat{\chi}_{1}^{0}, \hat{\chi}_{1}^{0} \rightarrow \tau \tau \hat{\nu}_{e}, e\tau \hat{\nu}_{z}$

aa 8 - aau (BPV)

Bilinear RPV CMSSM

 $\bar{q}\bar{q}, \bar{q} \rightarrow q\bar{\chi}$

88.8→498

475 GeV

350 GeV

Key analyses in the search for BSM Physics

Outline

The Search for Cracks in the Standard Model

Overview of the BSM Searches in ATLAS and CMS

8 Key analyses in the search for BSM Physics

🕘 Looking ahead to Run II

D.W. Miller (EFI, Chicago)

Generic signature of new strong dynamics

- Expect couplings between new resonances (e.g. W', graviton) and SM W/Z/H bosons
- Signature-based searches benchmarked with reference models
- Tag boosted W/Z bosons using jet substructure (*N*-subjettiness, τ_{21}) for high mass resonances
 - → Extremely novel tagging and background estimation techniques employed

D.W. Miller (EFI, Chicago)

Generic signature of new strong dynamics

- Expect couplings between new resonances (e.g. W', graviton) and SM W/Z/H bosons
- Signature-based searches benchmarked with reference models
- Tag boosted W/Z bosons using jet substructure (*N*-subjettiness, τ_{21}) for high mass resonances
 - → Extremely novel tagging and background estimation techniques employed

D.W. Miller (EFI, Chicago)

Generic signature of new strong dynamics

- Expect couplings between new resonances (e.g. W', graviton) and SM W/Z/H bosons
- Signature-based searches benchmarked with reference models
- Data-driven background estimation for unique di-Higgs \rightarrow 4 *b*-jet final state
 - \rightarrow Using Higgs boson as a search tool for BSM physics

BSM results from the LHC - 47th FNAL Users Meeting

10/19

- Model independent limits vs. mass and width
- Big gains on branching ratios by exploiting hadronic final states, sophisticated background estimation methods, and state-of-the art tools
- Some of the first searches of this kind (4b, hadronic VV)

D.W. Miller (EFI, Chicago)

Searching for strongly produced SUSY final states

- Decay chain leads to many jets and $E_{\rm T}^{\rm miss}$ (in <u>most</u> cases)
- Very sensitive searches for colored particles
- Search strategies so far have relied on number of jets, heavy flavor composition of final state, and $E_{\rm T}^{\rm miss}$

Searching for strongly produced SUSY final states

- Novel search techniques (e.g. razor) and large jet multiplicity final states (e.g. 1 lepton + 6 or more jets) are leading the way to higher gluino and stop mass sensitivity
- Vanilla SUSY excluded below about 1 TeV, but room for specific stop scenarios

D.W. Miller (EFI, Chicago)

Broad searches for top quark partners...using Higgs!

- Very active search programs for **fourth-generation fermions**
- Rich phenomenology, with many signatures: top, b, W/Z (ℓ , jets), Higgs, etc. but VLQ generally excluded below about 700 GeV
- Continuing to use Higgs as a search tool in conjunction with sophisticated jet substructure techniques in the boosted regime

D.W. Miller (EFI, Chicago)

BSM results from the LHC - 47th FNAL Users Meeting

xpected T 500 GeV x-sec

Limit [pb]

Long-lived Particle Searches with Squarks and Gluinos

- Long-lived $\tilde{\chi}_1^0$ with a displaced vertex: DV+ μ signature using m_{vertex} and N_{track}
 - ID vertex using dedicated tracking and vertexing algorithm
 - Fully data-driven background estimation: exp. bckg very small $\rightarrow N_{bckg}^{exp} = 0.02 \pm 0.02$ 3 benchmark models excluded for wide range of $c\tau$
- Long-lived, stopped *g*: large calorimeter energy in empty bunch crossings
 - Looking for \tilde{g} *R*-hadrons using jet shape and muon spectrometer information
 - Muon segment veto to remove background from cosmic rays and beam-halo
 - For $m_{\tilde{\chi}^0}$ =100 GeV, exclude $m_{\tilde{g}} < 600$ GeV for $\tau_{\tilde{g}} < 2$ years!

D.W. Miller (EFI, Chicago)

Looking ahead to Run II

Outline

The Search for Cracks in the Standard Model

Overview of the BSM Searches in ATLAS and CMS

3 Key analyses in the search for BSM Physics

4 Looking ahead to Run II

D.W. Miller (EFI, Chicago)

Early Run II Expectations

Early 2015 LHC Program:

- May: Stable beams operation with 50ns bunch spacing after intensity ramp-up
- June: Stable beams operation with 25ns bunch spacing after intensity ramp-up

Outlook for 2015:

- Huge increase in discovery potential
- Suggests a strong focus on targeted searches very early
- Both short-term and longer-term efforts will depend on detector performance
- With 3 fb⁻¹ many searches reach or surpass current sensitivity

Looking ahead to Run II LHC Startup Plan

Preparing to use complex hadronic final states in Run II

Already studying substructure-compatible corrections for 14 TeV pile-up scenarios.

ATLAS Simulation Preliminary Entrie iets with B=1.0.0 0 c lol < 1 Normalized E 500 < p[#] < 750 GeV ythia8 Z' → tt (m_=2 TeV) 0.08 0.06 0.04 0.02 -100 200 300 400 m^{jet} [GeV] Entrie $\begin{array}{c} \begin{array}{c} & \text{Trimmed, jet 4-vector} \\ \hline \textbf{P} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{P} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{V} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{V} & \textbf{V} & \textbf{O} & \textbf{O} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} & \textbf{V} \\ \hline \textbf{V} & \textbf{V} & \textbf{V} \\ \end{bmatrix} \end{matrix} \end{bmatrix} \end{matrix} \ \textbf{V} & \textbf{V} &$ thia8 Z' → tt (m =2 TeV) 0.08 0.06 0.04 0.02 -100 100 300 400 500 m^{jet} [GeV]

Also studying sophisticated shape corrections (ATLAS-CONF-2013-085) to mitigate the effects of pileup on jet shapes.

D.W. Miller (EFI, Chicago)

Summary and conclusions

Rich programs in BSM physics searches in ATLAS and CMS exploiting complex final states, multi-object topologies, and the newly discovered Higgs boson.

Strong constraints on new physics from the LHC

- No W/Z di-boson resonance with SM-like couplings below 1 TeV
- Vanilla SUSY excluded below about 1 TeV
- VLO excluded below about 700 GeV

Extending and improving existing searches

- Higgs as a standard search tool for BSM physics
- Complex hadronic final states being fully exploited
- Increased focus on boosted topologies
- Many holes left and Run II will provide an opportunity to extend reach and close those gaps
 - Long-lived particles and degenerate mass splittings still extremely hard to isolate
 - Complex mixed branching ratio final states still not fully explored, but we're getting there

Conclusions

• CMS and ATLAS are leveraging advances in detector technology, search strategies, and theoretical foundations to investigate the limits of the energy frontier

D.W. Miller (EFI, Chicago)

Backup slides and additional information

Outline

D.W. Miller (EFI, Chicago)

Backup slides and additional information

Additional Material

D.W. Miller (EFI, Chicago)

ATLAS Exotics Searches* - 95% CL Exclusion

Status: April 2014

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	ℓ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit		Reference
	ADD $G_{VV} + g/g$	_	1-2 i	Yes	47	Mo 437 TeV	a=2	1210 4491
	ADD non-resonant ((/yy	2γ or 2e, μ	-	-	4.7	M ₅ 4.18 TeV	n = 3 HLZ NLO	1211.1150
	ADD QBH $\rightarrow \ell q$	1 e.u	11	-	20.3	Ma 5.2 TeV	a = 6	1311 2005
s	ADD BH high New	2 µ (SS)	_	-	20.3	Ma 5.7 TeV	n = 6, Mo = 1.5 TeV, non-rot BH	1308.4075
ŝ	ADD BH high 5 pr	>1e.4	> 2 i	-	20.3	Ma 6.2 TeV	n = 6, Mo = 1.5 TeV, non-rot BH	ATLAS-CONF-2014-016
en	RS1 $G_{KK} \rightarrow \ell\ell$	2 e.u		-	20.3	Gyr mass 2.47 TeV	$k/\overline{M}_{CV} = 0.1$	ATLAS-CONF-2013-017
Ę.	RS1 $G_{KK} \rightarrow ZZ \rightarrow \ell \ell gg/\ell \ell \ell \ell$	2 or 4 e, µ	2 i or -	-	1.0	Gyr mass 845 GeV	$k/\overline{M}_{\rm el} = 0.1$	1203.0718
ĕ	$BS1 G_{VV} \rightarrow WW \rightarrow f_V f_V$	2 e.u	_	Yes	47	G _{ver} mass 1.23 TeV	$k/M_{ev} = 0.1$	1208 2880
ň.	Bulk BS $G_{\mu\nu\nu} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	-	4 b	-	19.5	Gen mass 590-710 GeV	$k/\overline{M}_{\rm el} = 1.0$	ATLAS.CONF.2014-005
~	Bulk BS $g_{VV} \rightarrow t\bar{t}$	1 e.u	> 1 b. > 1J	2i Yes	14.3	Rox mass 0.5-2.0 TeV	BR = 0.925	ATLAS.CONF.2013.052
	5 ¹ /Z ₂ ED	2 e.u		-	5.0	Max * 8 ⁻¹ 4.71 TeV		1209.2535
	UED	2γ	-	Yes	4.8	Compact. scale R ⁻¹ 1.41 TeV		ATLAS-CONF-2012-072
	$SSM Z' \rightarrow \ell\ell$	2 e,µ	-	-	20.3	Z' mass 2.86 TeV		ATLAS-CONF-2013-017
e s	$SSM Z' \rightarrow \tau\tau$	2 τ	-	-	19.5	Z' mass 1.9 TeV		ATLAS-CONF-2013-066
S S	SSM $W' \rightarrow \ell \nu$	1 e, µ	-	Yes	20.3	W' mass 3.28 TeV		ATLAS-CONF-2014-017
<u>g</u> õ	EGM $W' \rightarrow WZ \rightarrow \ell_Y \ell' \ell'$	3 e, µ	-	Yes	20.3	W' mass 1.52 TeV		ATLAS-CONF-2014-015
	LRSM $W'_R \rightarrow t\overline{b}$	1 e,µ	2 b, 0-1 j	Yes	14.3	W' mass 1.84 TeV		ATLAS-CONF-2013-050
	Cl qqqq	-	2 j	-	4.8	Λ 7.6 TeV	$\eta = +1$	1210.1718
ö	Cl ggll	2 e, µ	-	-	5.0	۸ 13	9 TeV η ₁₁ = -1	1211.1150
	Cl uutt	2 e, µ (SS)	$\geq 1 \ b, \geq 1$	j Yes	14.3	A 3.3 TeV	C = 1	ATLAS-CONF-2013-051
5	EFT D5 operator	-	1-2 j	Yes	10.5	M. 731 GeV	at 90% CL for m(x) < 80 GeV	ATLAS-CONF-2012-147
ā	EFT D9 operator	-	$1 \ J, \leq 1 \ j$	Yes	20.3	M, 2.4 TeV	at 90% CL for $m(\chi) < 100 {\rm GeV}$	1309.4017
	Scalar LQ 1 st gen	2 e	≥ 2 j	-	1.0	LQ mass 660 GeV	$\beta = 1$	1112.4828
g	Scalar LQ 2 nd gen	2μ	≥ 2 j	-	1.0	LQ mass 685 GeV	$\beta = 1$	1203.3172
	Scalar LQ 3 rd gen	1 e,μ, 1 τ	1 b, 1 j	-	4.7	LQ mass 534 GeV	$\beta = 1$	1303.0526
~ 00	Vector-like quark $TT \rightarrow Ht + X$	1 e,µ	$\geq 2 \ b, \geq 4$	j Yes	14.3	T mass 790 GeV	T in (T,B) doublet	ATLAS-CONF-2013-018
S.X.	Vector-like quark $TT \rightarrow Wb + X$	1 e, µ	≥ 1 b, ≥ 3	j Yes	14.3	T mass 670 GeV	isospin singlet	ATLAS-CONF-2013-060
문질	Vector-like quark $BB \rightarrow Zb + X$	2 e, µ	$\geq 2 b$	-	14.3	B mass 725 GeV	B in (B,Y) doublet	ATLAS-CONF-2013-056
	Vector-like quark $BB \rightarrow Wt + X$	2 e, µ (SS)	≥ 1 b, ≥ 1	j Yes	14.3	B mass 720 GeV	B in (T,B) doublet	ATLAS-CONF-2013-051
p Sc	Excited quark $q^* \rightarrow q\gamma$	1γ	1 j	-	20.3	q* mass 3.5 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1309.3230
<u> </u>	Excited quark $q^* \rightarrow qg$	-	2 j	-	13.0	q* mass 3.84 TeV	only u^* and d^* , $\Lambda = m(q^*)$	ATLAS-CONF-2012-148
ž E	Excited quark $b^* \rightarrow Wt$	1 or 2 e, µ	1 b, 2 j or 1	j Yes	4.7	b" mass 870 GeV	left-handed coupling	1301.1583
~~~	Excited lepton $\ell^* \rightarrow \ell \gamma$	2 e, μ, 1 γ	-	-	13.0	I' mass 2.2 TeV	$\Lambda = 2.2 \text{ TeV}$	1308.1364
	LRSM Majorana v	2 e,µ	2 j	-	2.1	N ⁰ mass 1.5 TeV	$m(W_R) = 2$ TeV, no mixing	1203.5420
~	Type III Seesaw	2 e,µ	-	-	5.8	N* mass 245 GeV	V _a  =0.055,  V _p  =0.063,  V _r  =0	ATLAS-CONF-2013-019
the	Higgs triplet $H^{++} \rightarrow \ell \ell$	2 e, µ (SS)	-	-	4.7	H ^{±±} mass 409 GeV	DY production, BR( $H^{++} \rightarrow \ell \ell$ )=1	1210.5070
Q	Multi-charged particles	-	-	-	4.4	multi-charged particle mass 490 GeV	DY production,  q  = 4e	1301.5272
	Magnetic monopoles	-	-	-	2.0	monopole mass 862 GeV	DY production,  g  = 1g _D	1207.6411
		- ve -	7 TeV	15-	8 TeV			l i
		¥5 -		19-		10 ⁻⁺ 1 1	^U Mass scale [TeV]	

"Only a selection of the available mass limits on new states or phenomena is shown.







## Details for the CMS all-hadronic VV Resonances Search



Di-V invariant mass distribution arXiv:1405.1994

*Left:* Distribution for pruned-jet mass mj in data, and in simulations of signal and background events. All simulated distributions are scaled to match the number of events in data. MADGRAPH/PYTHIA and HERWIG++ refer to QCD multijet event simulations.

*Right:* The mjj distributions for doubly tagged events in data, and for QCD multijet (MADGRAPH/PYTHIA and HERWIG++) simulations, normalized to data.

D.W. Miller (EFI, Chicago)

# 3rd Generation SUSY Search Summary in ATLAS



D.W. Miller (EFI, Chicago)

# Summary of Constraints on T' from ATLAS



Backup slides and additional information

#### VLO in ATLAS

# Summary of Analysis for T' in ATLAS





#### Zb/t+X [ATLAS-CONF-2013-056]

- **OS/SF** leptons ٠
- Z candidate
- High  $p_{T}(Z)$
- ≥ 2 b-jets
- Large H_T(jets)

Test m(Zb)

### Same-Sign

[ATLAS-CONF-2013-056]

SS leptons Missing E_T  $\geq 2$  jets ≥ 1 b-jets Large H_T(all)

Count



D.W. Miller (EFI, Chicago)

Backup slides and additional information LHC Startup Plan

# The LHC Plan for Early Run II

http://lhc-commissioning.web.cern.ch/lhc-commissioning/2015/2015-commissioning-outline.htm



D.W. Miller (EFI, Chicago)

Backup slides and additional information LHC Startup Plan

# The LHC Plan for Early Run II

http://lhc-commissioning.web.cern.ch/lhc-commissioning/2015/2015-commissioning-outline.htm

	July				Aug			Sep					
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	29		13	20	27	,		17	24	গ	7	14	21
Tu							tc.)						
We					Floating MD		tUNS eta e					TS3	
Th					[48 h]		gh b						
Fr							SPEC M, hi						
Sa							, by						
Su													

	Oct	ct Nov Dec						End physics [06:00]						
Wk	40	41	42	43	44	45	46	47	48	49	50	51	L	52
Мо	28	5	12	19	26	2		16	23	30	7	*	14	21
Tu												8		Xmas
We												ical st		
Th												Techn		
Fr						MD4								
Sa														
Su														

D.W. Miller (EFI, Chicago)

Backup slides and additional information Long-Term LHC Plan

# Long-Term LHC Plan

http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm



D.W. Miller (EFI, Chicago)

BSM results from the LHC - 47th FNAL Users Meeting

June 11th, 2014 11 / 13

# Long-Term LHC Plan

http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm



D.W. Miller (EFI, Chicago)

BSM results from the LHC - 47th FNAL Users Meeting

June 11th, 2014 12 / 13

# Long-Term LHC Plan

http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm



D.W. Miller (EFI, Chicago)