

The Muon Accelerator Program

Mark Palmer 47th Annual Users Meeting Fermilab, June 11-12, 2014

Introduction and Context

The focus of the Muon Accelerator Program (MAP) is on the R&D required to demonstrate feasibility of muon accelerators for HEP applications

- Neutrino Factories (NF)
 - Both long and short baseline
- Muon Colliders (MC)
 - Higgs Factory to multi-TeV Scale

June 11, 2014 🛟 Fermilab

 Also muon accelerator concepts that can support ongoing/planned experiments (eg, narrow band neutrino beam line & cooled muon sources)

NF and MC Muon Accelerator capabilities are strongly linked

- With key synergies that can be exploited to control technical risk and cost

- A unique breadth of physics that can be supported

Neutrino Factories

vSTORM – Short Baseline v factory

MAIN INJECTOR

RIMARY REAL

- Definitive measurement of sterile neutrinos
- Precision v_e cross-section measurements (key systematic for LB SuperBeam experiments)
- Muon accelerator proving ground...

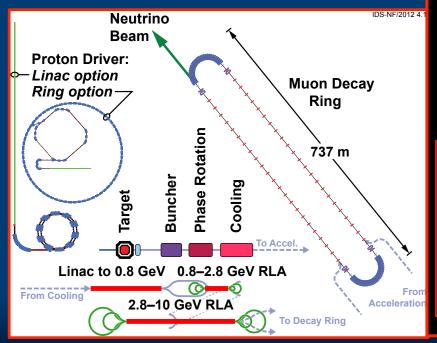
NuMAX (Neutrinos from a Muon Accelerator CompleX)

MUON DECAY RIN

- Long baseline concept developed by MAP
 - As part of its Muon Accelerator Staging Study (MASS)
- Evolutionary from IDS-NF Concept
 FNAL to SURF baseline
 - Magnetized detector (MIND, Mag LAr?)
 - CP violation sensitivity optimal for 4-6 GeV beam energy
 - Provides ongoing short baseline capabilities

SuperBIND Detector

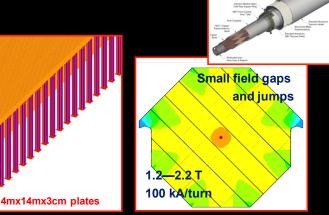
Far Detector



STORM

The Long Baseline Neutrino Factory

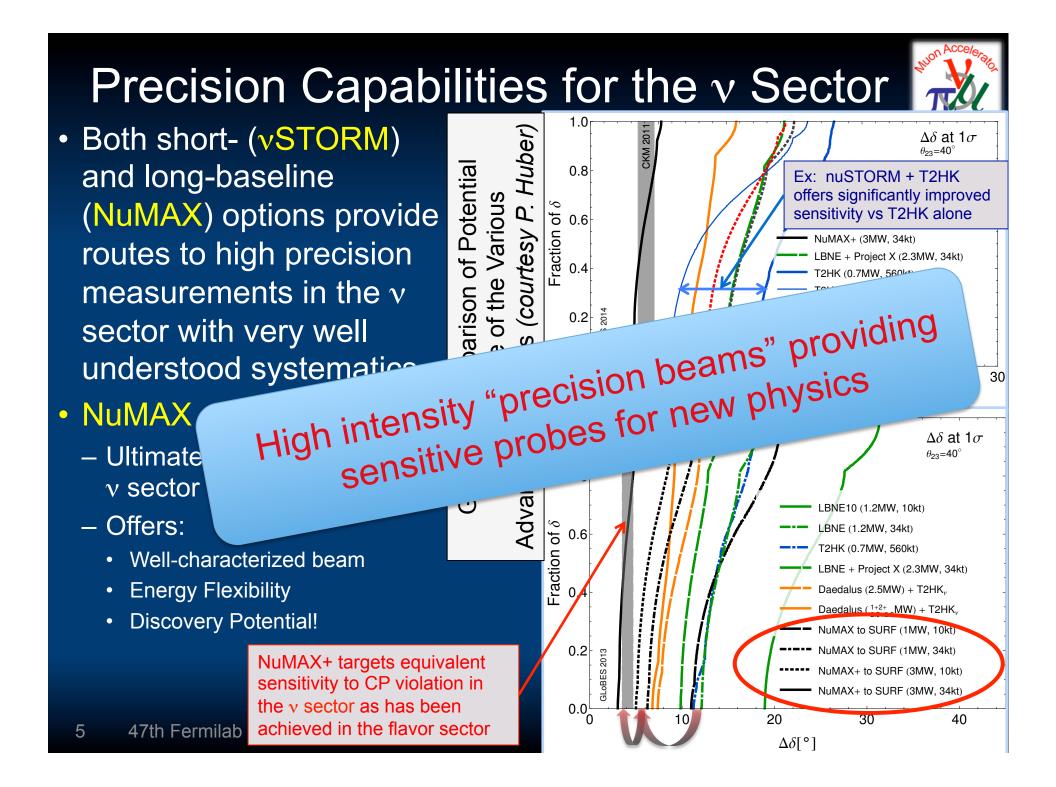
- IDS-NF: the ideal NF
 - Supported by MAP
- MASS working group: *A staged approach -NuMAX*@5 GeV \$SURF



	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Distance to long-baseline neutrino detector	1 500–2 500 km

Magnetized Iron Neutrino Detector (MIND):

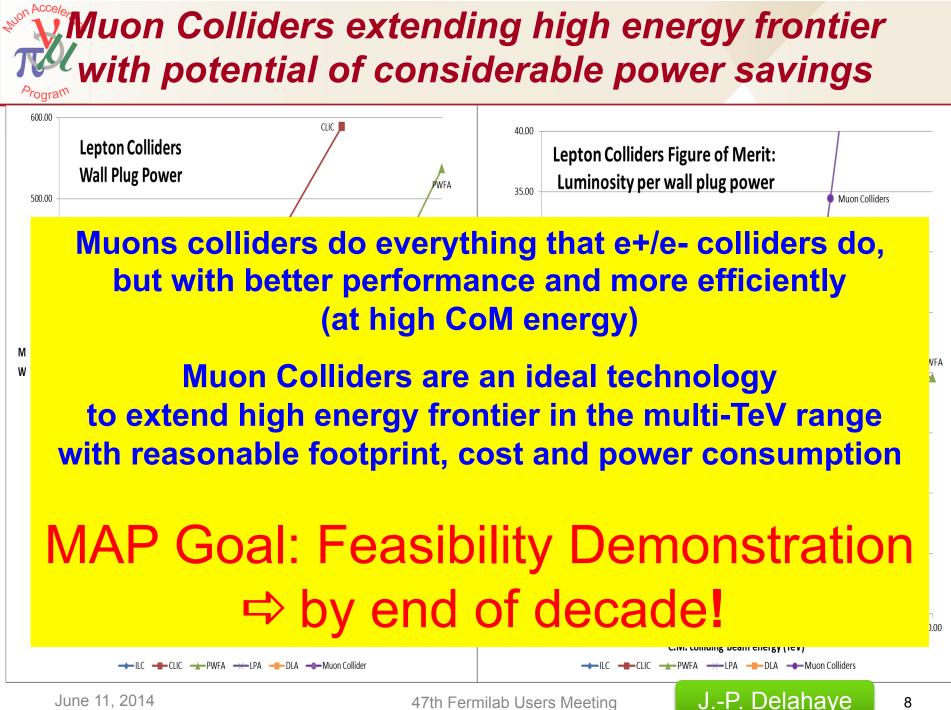
- IDS-NF baseline:
 - Intermediate baseline detector:
 100 kton at 2500-5000 km
 - Magic baseline detector:
 - 50 kton at 7000—8000 km
 - Appearance of "wrong-sign" muons
 - Toroidal magnetic field > 1 T
 - Excited with "superconducting transmission line"


- Segmentation: 3 cm Fe + 2 cm scintillator
- 50-100 m long
- Octagonal shape
- Welded double-sheet
 Width 2m; 3mm slots between plates

Bross, Soler

4 47th Fermilab Users Meeting

June 11, 2014 🛟 Fermilab

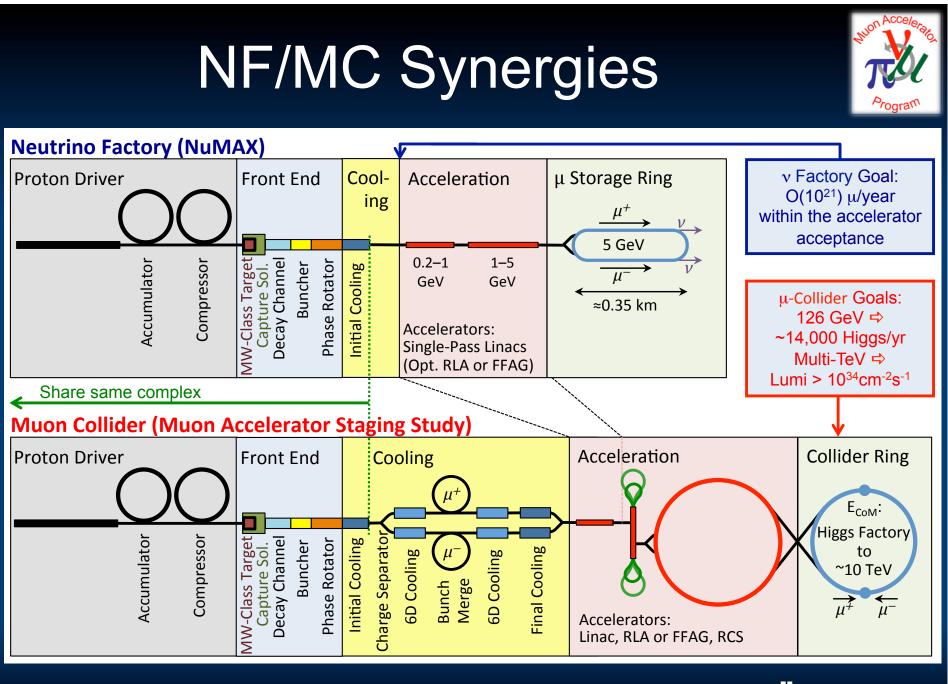


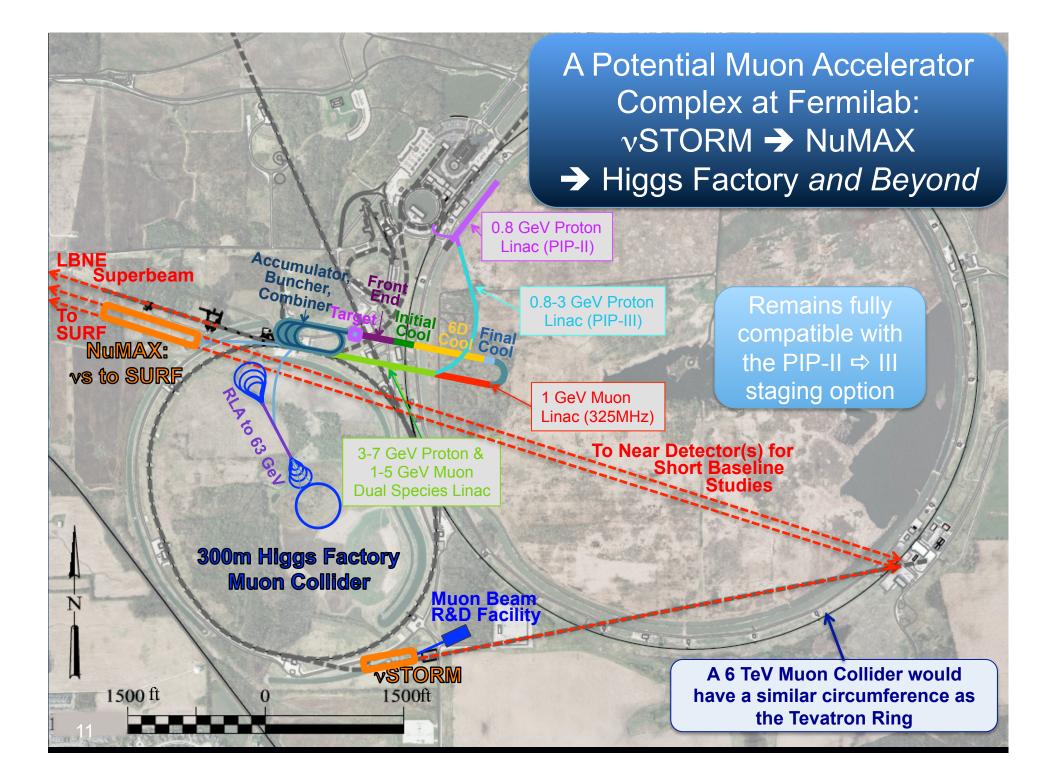
NF Staging (MASS)								
System	Parameters	Unit	nuSTORM	NuMAX Commissioning	NuMAX	NuMAX+	$\pi \mathcal{U}$	
Perfor- mance	v _e or v _µ to detectors/year	-	3×10 ¹⁷	4.9×10 ¹⁹	1.8×10 ²⁰	5.0×10 ²⁰	Program	
Pei	Stored µ+ or µ-/year	-	8×10 ¹⁷	1.25×10 ²⁰	4.65×10 ²⁰	1.3×10 ²¹		
	Far Detector:	Туре	SuperBIND	MIND / Mag LAr	MIND / Mag LAr	MIND / Mag LAr		
	Distance from Ring	km	1.9	1300	1300	1300		
ē	Mass	kT	1.3	100 / 30	100 / 30	100 / 30		
Detector	Magnetic Field	Т	2	0.5-2	0.5-2	0.5-2		
å	Near Detector:	Туре	SuperBIND	Suite	Suite	Suite		
	Distance from Ring	m	50	100	100	100		
	Mass	kT	0.1	1	1	2.7		
	Magnetic Field	Т	Yes	Yes	Yes	Yes		
	Ring Momentum	GeV/c	3.8	5	5	5		
Neutrino Ring	Circumference (C)	m	480	737	737	737		
eutrin Ring	Straight section	m	184	281	281	281		
2 [°]	Number of bunches	-		60	60	60		
	Charge per bunch	1×10 ⁹		4.1	15.4	35		
	Initial Momentum	GeV/c	-	0.25	0.25	0.25		
Accelerati on	Single-pass Linacs	GeV/c		1.0, 3.75	1.0, 3.75	1.0, 3.75		
9 °	Ungle-pass Emacs.	MHz	-	325, 650	325, 650	325, 650		
Ă	Repetition	Hz	-	60	60	60		
Cooling	6D ———		No	No	Initial	Initial		
Protor Drivei	Proton Beam Power	MW	0.2	1	1	2.75		
	Proton Beam	GeV	120	6.75	6.75	6.75		
	Protons/year	1×10 ²¹	0.1	9.2	9.2	25.4	ermilab	
	Repetition	Hz	0.75	15	15	15	FIIIIaly	

Features of the Muon Collider 1800 $h \rightarrow b\overline{b}$ 1600 Superb Energy Resolution $\Gamma_{h} =$ st 1400 4.21 MeV $L_{\text{step}} =$ 0.05 fb^{-1} - SM Thresholds and s-channel Higgs Factory operation R = 0.003%1000• Multi-TeV Capability (≤ 10 TeV): -.03 - .015 126 + .015 + .03 \sqrt{s} (GeV) - Compact & energy efficient machine 500 400 $h \rightarrow WW$ - Luminosity > 10³⁴ cm⁻² s⁻¹ $\Gamma_h =$ $L_{step} =$ 300 Events 200 4.21 MeV 0.05 fb^{-1} - Option for 2 detectors in the ring R = 0.003%100 • For $\sqrt{s} > 1$ TeV: Fusion processes dominate -.03 -.015 126 +.015 +.03⇒ an Electroweak Boson Collider \sqrt{s} (GeV) ⇒ a discovery machine complementary to a μ ν_{μ} very high energy pp collider W^{-} - At >5TeV: Higgs self-coupling resolutions of <10% ---- X W^+ $\bar{\nu}_{\mu}$ What are our accelerator options if new LHC data shows evidence for a multi-TeV particle spectrum?

7 47th Fermilab Users Meeting

June 11, 2014 🛟 Fermilab


The Staging Study (MASS)

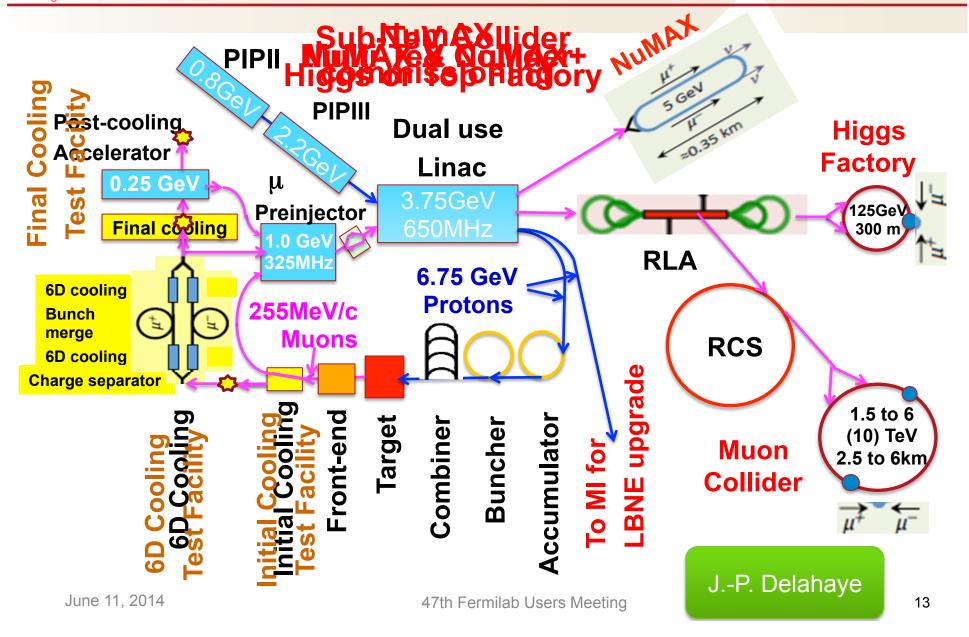

Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the US - http://arxiv.org/pdf/1308.0494

The plan consists of a series of facilities with increasing complexity, each with performance characteristics providing unique physics reach:

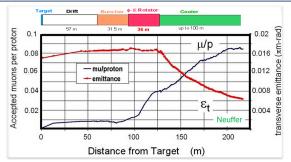
- nuSTORM: a short-baseline Neutrino Factory-like ring enabling a definitive search for sterile neutrinos, as well as neutrino cross-section measurements the imately be required for precision measurements at any long-baseline experi
- Ability to utilize some or all stages NuMAX: an initial long-baseline Neutrino Factory, or SURF. affording a precise and well-characterized neutrip dities of conventional superbeam technology.
- NuMAX+: a full-intensity Neutrino Fact AX, as the ultimate source to enable precision CP-violation mea
- Higgs Factory: a collider whose baseline mons are capable of providing between 3500 (during startup operations) and $1 \longrightarrow 0$ Higgs events per year (10⁷ sec) with exquisite energy resolution.
- Multi-TeV Collider: if warranted by LHC results, a multi-TeV Muon Collider likely offers the best performance and least cost for any lepton collider operating in the multi-TeV regime.

June 11, 2014 **Fermilab**

Muon Collider Parameters


Muon Collider Parameters									
Contract to the second		Higgs Factory		Top Threshold Options		Multi-TeV Baselines			
Fermilab Site									Accounts for
		Startup	Production	H	ligh	High			Site Radiation
Parameter	Units	Operation	Operation	Resc	olution	Luminosity			Mitigation
CoM Energy	TeV	0.126	0.126		0.35	0.35	1.5	3.0	6.0
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008		0.07	0.6	1.25	4.4	12
Beam Energy Spread	% 🔇	0.003	0.004		0.01	0.1	0.1	0.1	0.1
Higgs* or Top ⁺ Production/10 ⁷ sec		3,500*	13,500*		7,000 ⁺	60 <i>,</i> 000⁺	37,500*	200,000*	820,000*
Circumference	km	0.3	0.3		0.7	0.7	2.5	4.5	6
No. of IPs		1	1		1	1	2	2	2
Repetition Rate	Hz	30	15		15	15	15	12	6
β*	ст	3.3	1.7		1.5	0.5	1 (0.5-2)	0.5 (0.3-3)	0.25
No. muons/bunch	10 ¹²	2	4		4	3	2	2	2
No. bunches/beam		1	1		1	1	1	1	1
Norm. Trans. Emittance, $\epsilon_{\scriptscriptstyle TN}$	rt mm-rad	0.4	0.2		0.2	0.05	0.025	0.025	0.025
Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1	1.5		1.5	10	70	70	70
Bunch Length, σ_{s}	cm	5.6	6.3		0.9	0.5	1	0.5	0.2
Proton Driver Power	MW	4 [♯]	4		4	4	4	4	1.6
[#] Could begin operation with Project X Stage II beam									

Exquisite Energy Resolution Allows Direct Measurement of Higgs Width Success of advanced cooling concepts ⇒ several × 10³² Site Radiation mitigation with depth and lattice design: ≤ 10 TeV


June 11, 2014 **Fermilab**

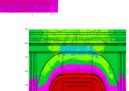
↑ North

Progressive installation in stages with Physics and technology validation at each stage

Technical Challenge: Tertiary Production

• A multi-MW proton source, *e.g.*, Project X, will enable O(10²¹) muons/year to be produced, bunched and cooled fit within the acceptance of an accelerator.

Technical Challenges: Acceleration

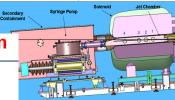

- Muons require an ultrafast accelerator chain Beyond the capability of most machines
- Several solutions for a muon acceleration scheme have been proposed:

- -Superconducting Linacs Recirculating Linear Accelerators (RLAs)
- Fixed-Field Alternating-Gradient (FFAG) Machines
- EMMA at Daresbury Lab is a test of the promising non-scaling type
- Rapid Cycling Synchrotrons (RCS) - Hybrid Machines

Technical Challenges: Ring, Magnets, Detector 🖡

- Emittances are relatively large, but muons circulate for ~1000 turns before decaying MARS energy
- Lattice studies for 1.5 TeV and 3 TeV CoM
- High field dipoles and quadrupoles must operate in high-rate muon decay backgrounds
 - Magnet designs under study
- Detector shielding & performance
 - Initial studies for 1.5 TeV, then 3 TeV
 - Shielding configuration
 - MARS background simulations

deposition map

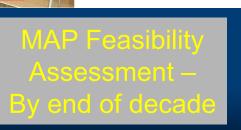

for 1.5 TeV

collider dipole

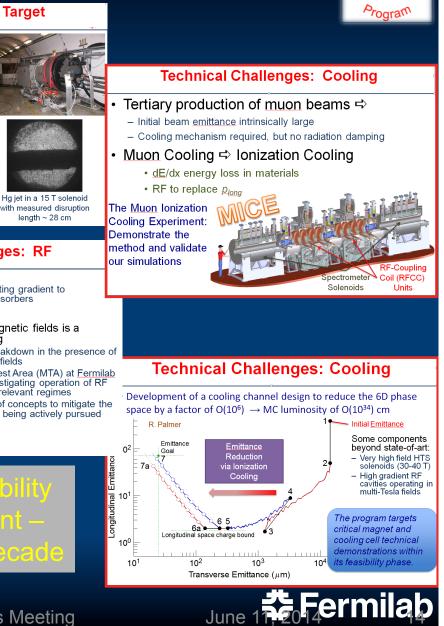
Technical Challenges

Technical Challenges: Target

- The MERIT Experiment at the CERN PS
 - Proof-of-principle demonstration of a liquid Hg iet target in high-field solenoid in Fall `07
 - Demonstrated a 20m/s liquid Hg jet injected into a 15 T solenoid and hit with a 115 KJ/pulse beam!
 - ⇒ Technology OK for beam powers up to 8 MW with a repetition rate of 70 Hz!


Technical Challenges: RF

- A Viable Cooling Channel requires
- Strong focusing and a large accelerating gradient to compensate for the energy loss in absorbers
- ⇒ Large B- and E-fields superimposed


Operation of RF cavities in high magnetic fields is a necessary element for muon cooling

- Control RF breakdown in the presence of high magnetic fields
 - The MuCool Test Area (MTA) at Fermilab is actively investigating operation of RF cavities in the relevant regimes Development of concepts to mitigate the

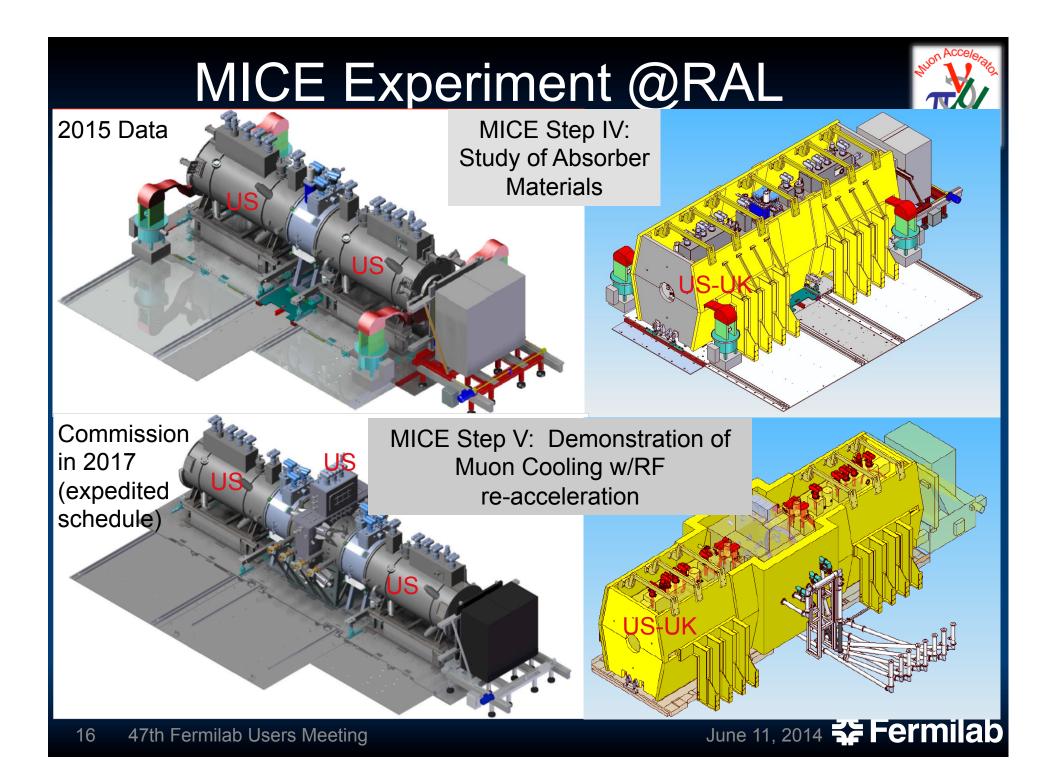
challenges are being actively pursued

47th Fermilab Users Meeting

MAP R&D Thrusts

Design Studies

- Proton Driver
- Front End
- Cooling
- Acceleration and Storage
- Collider
- Machine-Detector Interface
- Work closely with physics and detector efforts


Technology R&D

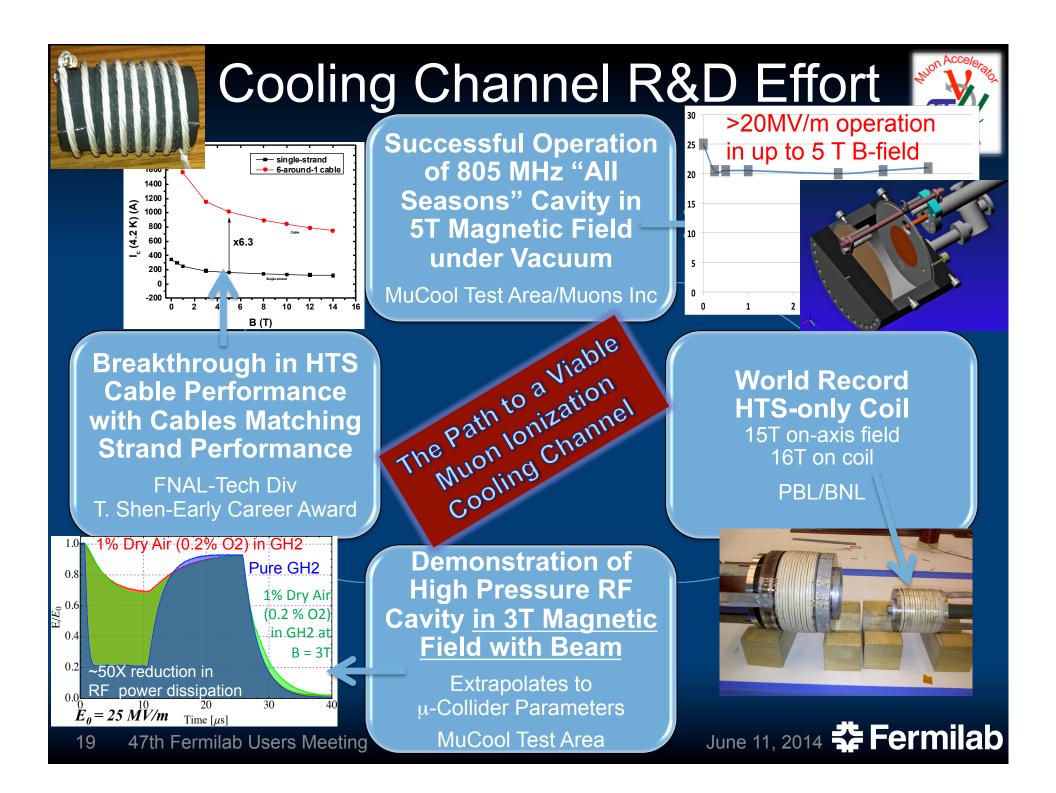
- -RF in magnetic fields
- SCRF for acceleration chain (eg, 200 MHz cavities)
- High field magnets
 - Utilizing HTS technologies
- Targets & Absorbers
- MuCool Test Area (MTA)

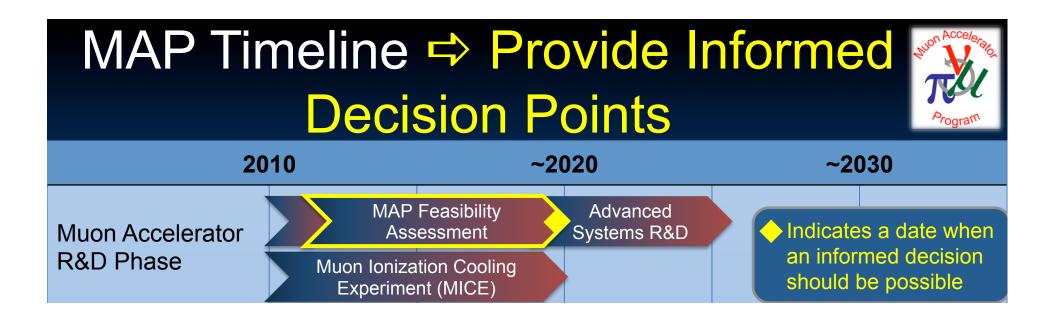
June 11, 2014 Fermilab

Major System Demonstration

- The Muon Ionization Cooling Experiment MICE
 - Major U.S. effort to provide key hardware: RF Cavities and couplers, Spectrometer Solenoids, Coupling Coil(s), Partial Return Yoke
 - Experimental and Operations Support

MICE Step IV Integration





47th Fermilab Users Meeting 17

20 2014

47th Fermilab Users Meeting

Summary I

June 11, 2014 **Fermilab**

- Muon accelerators can provide unique options for a facility at the intensity and energy frontiers
 - Precision neutrino measurements is sensitivity to new physics
 - A promising path to a multi-TeV lepton collider:
 - if required by (new) physics results
 - with reasonable footprint, cost & power consumption
 - A TeV-scale collider has complementary discovery potential to a 100TeV pp FCC
 - See talk by Estia Eichten: https://indico.fnal.gov/getFile.py/access? contribId=16&sessionId=0&resId=0&materiaIId=slides&confId=8326)
 - MAP Program Execution Plan endorsed by DOE Review in Feb 2014 for completion of feasibility assessment by 2020.

Summary II

- MASS: An attractive Staging Path for Muon Accelerators
 - A series of facilities with increasing complexity and physics reach with manageable budget and risk for each stage
 - Provides an integrated R&D platform at each stage for validation of the technologies required by subsequent stages
 - Dates for informed technical decisions for specific facilities:
 - Early 2020s for a long-baseline Neutrino Factory (NuMAX)
 - Late 2020s for a Muon Collider
 - A facility capable of flexibility in adapting to a range of physics requirements

Uniquely suited to the accelerator complex at Fermilab

- A natural extension of the LBNF concept
- Ability to respond to various physics thrusts

Comments

- Where are we heading now? P5 Recommendations...
 - A plan for expedited completion of MICE was already presented to the MICE Project Board in April – endorsed
 - Includes Step IV measurements in 2015-16 and deployment of Step V configuration by 2017 (demonstration of "cooling with RF")
 - Have been requested by DOE to prepare a transition plan
 - Preserve critical investments
 - Sensitivity to international commitments
 - 3 Major Thrusts:
 - MICE Conclusion
 - Critical activities that should be preserved within the GARD program
 - Lower priority items that will be deferred
 - Review planned in several weeks
 - Will serve as input to the Accelerator R&D Panel
 - Will determine FY15 budget while awaiting the panel's report

