NNLO dijets at the LHC

James Currie
University of Zürich

Loopfest XIV
CUNY, New York

19/06/14

Jets in the Wild

Jets in the Detector

Jets are the only available high energy experimental QCD object

[Phys. Rev. Lett. 35: 1609 (1975)]

$m_{j j} \sim 2.55 \mathrm{TeV}, p_{t_{1}}=420 \mathrm{GeV}, p_{t_{2}}=320 \mathrm{GeV}$

Jet Cross Sections

Many process of interest at LHC involve at least one jet in the final state:

$$
p p \rightarrow j j(j), H+j(j), V+j(j), t \bar{t}(j), \gamma+j
$$

Cross sections accurately measured and presented in differential form, e.g.

- single jet inclusive in p_{T} and $|y|$
- exclusive dijet in $m_{j j}$ and y^{*}

Experimental Uncertainties

- JES uncertainty $\sim 1 \%$ for $p_{T}>150 \mathrm{GeV}$ central jets
- translates to $<10 \%$ uncertainty on single jet incl. cross section
- onus on theory community to better this

Constraining PDFs

Single jet inclusive x-sec, constrain PDFs, in particular the gluon at large x

[CMS-PAS-SMP-12-028]

Measuring α_{s}

Can use single jet inclusive x -sec to fit:

- $\alpha_{s}\left(M_{Z}\right)$
- running coupling

[CMS-PAS-SMP-12-028]

$$
\alpha_{s}\left(M_{Z}\right)=0.1184 \pm 0.007
$$

No hadronic jet data in world average, yet

- Separated jets, BFKL vs DGLAP
- dijet cross section
- NLO fixed order too high
- sensitive to higher order effects

[Badger, Biedermann, Uwer, Yundin, '13]

[ATLAS, '11]

Theoretical improvements

Theoretical improvements

Theoretical improvements

Theoretical improvements

Theoretical improvements

The NNLO Marketplace

In recent years many new tools developed for NNLO

- all have advantages and disadvantages

	analytic	FS colour	IS colour	local
antenna subtraction	\checkmark	\checkmark	\checkmark	X
STRIPPER	X	\checkmark	\checkmark	\checkmark
q_{T} subtraction	\checkmark	X	\checkmark	\checkmark
reverse unitarity	\checkmark	X	\checkmark	-
Trócsányi et al	X	\checkmark	X	\checkmark

Antenna subtraction is the only method for computing cross sections with:

- hadronic initial-states
- jets in the final-state (especially more than one jet)
- analytic pole cancellation

Subtraction at NNLO

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{a b, N N L O} & =\int_{\Phi_{m+2}} \mathrm{~d} \hat{\sigma}_{a b, N N L O}^{R R} \\
& +\int_{\Phi_{m+1}}\left[\mathrm{~d} \hat{\sigma}_{a b, N N L O}^{R V}+\mathrm{d} \hat{\sigma}_{a b, N N L O}^{M F, 1}\right] \\
& +\int_{\Phi_{m}}\left[\mathrm{~d} \hat{\sigma}_{a b, N N L O}^{V V}+\mathrm{d} \hat{\sigma}_{a b, N N L O}^{M F, 2}\right]
\end{aligned}
$$

Subtraction at NNLO

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{a b, N N L O} & =\int_{\Phi_{m+2}}\left[\mathrm{~d} \hat{\sigma}_{a b, N N L O}^{R R}-\mathrm{d} \hat{\sigma}_{a b, N N L O}^{S}\right] \\
& +\int_{\Phi_{m+1}}\left[\mathrm{~d} \hat{\sigma}_{a b, N N L O}^{R V}-\mathrm{d} \hat{\sigma}_{a b, N N L O}^{T}\right] \\
& +\int_{\Phi_{m}}\left[\mathrm{~d} \hat{\sigma}_{a b, N N L O}^{V V}-\mathrm{d} \hat{\sigma}_{a b, N N L O}^{U}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{a b, N N L O}^{T} & =-\int_{1} \mathrm{~d} \hat{\sigma}_{a b, N N L O}^{S}+\mathrm{d} \hat{\sigma}_{a b, N N L O}^{V, S}-\mathrm{d} \hat{\sigma}_{a b, N N L O}^{M F, 1} \\
\mathrm{~d} \hat{\sigma}_{a b, N N L O}^{U} & =-\int_{2} \mathrm{~d} \hat{\sigma}_{a b, N N L O}^{S}-\int_{1} \mathrm{~d} \hat{\sigma}_{a b, N N L O}^{V, S}-\mathrm{d} \hat{\sigma}_{a b, N N L O}^{M F, 2}
\end{aligned}
$$

What is an antenna?

Constructed from physical matrix elements

$$
X_{3}^{0}(i, j, k) \sim \frac{\left|\mathcal{M}_{3}^{0}(i, j, k)\right|^{2}}{\left|\mathcal{M}_{2}^{0}(I, K)\right|^{2}}, \quad X_{4}^{0}(i, j, k, l) \sim \frac{\left|\mathcal{M}_{4}^{0}(i, j, k, l)\right|^{2}}{\left|\mathcal{M}_{2}^{0}(I, L)\right|^{2}}
$$

Three main types:

- Quark-antiquark. Derived from the process $\gamma^{*} \rightarrow q \bar{q}+\cdots$

- Quark-gluon. Derived from the process $\tilde{\chi}^{0} \rightarrow \tilde{g} g+\cdots$

- Gluon-gluon. Derived from the process $H \rightarrow g g+\cdots$

How are they useful?

- smoothly interpolates many unresolved limits

- analytically integrable... and integrated

Antenna Subtraction Toolbox

Many tools needed for implementation:

- final-final phase space mappings [Kosower '03]
- FF $X_{3}^{0}, X_{4}^{0}, X_{3}^{1}$ antennae [Gehrmann-De Ridder, Gehrmann, Glover, '04, '05]
- integrated FF antennae [Gehrmann-De Ridder, Gehrmann, Glover, '05]
$\Rightarrow e^{+} e^{-} \rightarrow 3$ jets at NNLO [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich,
'07, Weinzierl '08]
Since then, extended for hadronic initial-states:
- initial-final + initial-initial mappings [Daleo, Gehrmann, Maître, '07]
- integrated IF X_{3}^{1}, X_{4}^{0} [Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, '10]
\rightarrow integrated II X_{4}^{0} [Boughezal, Gehrmann-De Ridder, Ritzmann, '11. Gehrmann, Ritzmann ,12]
- integrated II X_{3}^{1} [Gehrmann, Monni, '11]

All tools exist for hadron-hadron scattering

[Glover, Pires, '10. Gehrmann De-Ridder, Glover, Pires, '12. Gehrmann De-Ridder, Gehrmann,
Glover, Pires ,'13. JC, Glover, Wells, '13. JC, Gehrmann De-Ridder, Glover, Pires, '14.]

NNLO calculations under way

- $p p \rightarrow j j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Pires, Wells]
- $g g \rightarrow j j$ leading colour \checkmark
- $g g \rightarrow j j$ sub-leading colour \checkmark
- $q \bar{q} \rightarrow j j$ leading colour
- $q g \rightarrow j j$ leading colour nearly there!
- $g g \rightarrow j j$ leading N_{F} in preparation
- $e p \rightarrow(2+1) j$ [JC, Gehrmann, Niehues]
- $p p \rightarrow H+j$ [Chen, Gehrmann, Glover, Jaquier]

LHC 8TeV
$>p p \rightarrow V+j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Morgan, Piebinga]

NNLO calculations under way

- $p p \rightarrow j j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Pires, Wells]
- $g g \rightarrow j j$ leading colour \checkmark
- $g g \rightarrow j j$ sub-leading colour \checkmark
- $q \bar{q} \rightarrow j j$ leading colour
- $q g \rightarrow j j$ leading colour nearly there!
- $g g \rightarrow j j$ leading N_{F} in preparation
- $e p \rightarrow(2+1) j$ [JC, Gehrmann, Niehues]
- $p p \rightarrow H+j$ [Chen, Gehrmann, Glover, Jaquier]

Tevatron
$\Rightarrow p p \rightarrow V+j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Morgan, Piebinga]

Example, $q \bar{q} \rightarrow g g g g$

Need to perform subtraction for

$$
\left|M_{6}^{0}\right|^{2} \sim \sum_{P(i, j, k, l)} M_{6}^{0}\left(1_{q}, i, j, k, l, 2_{\bar{q}}\right)
$$

Double unresolved limits subtracted using,

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{N N L O}^{b} \sim \sum & +D_{4}^{0}(1, i, j, k) M_{4}^{0}(\overline{1},(\widetilde{i j k}), l, 2) \\
& +F_{4}^{0}(i, j, k, l) M_{4}^{0}(1,(\widetilde{i j k}),(\widetilde{j k l}), 2) \\
& +D_{4}^{0}(2, l, k, j) M_{4}^{0}(1, i,(\widetilde{j k l}), \overline{2}) \\
& -\tilde{A}_{4}^{0}(1, i, k, 2) M_{4}^{0}(\overline{1}, \tilde{j}, \tilde{l}, \overline{2})
\end{aligned}
$$

- full subtraction term successfully removes all single and double unresolved divergence

Quark-gluon channel: identity changing collinear limits

Need to perform subtraction for

$$
\left|M_{6}^{0}\right|^{2} \sim \sum_{P(2, i, j, k)} M_{6}^{0}\left(1_{q}, 2_{g}, i, j, k, Q\right)
$$

Matrix element can collapse onto different initial states

- quark-gluon, e.g., $2|i| j, i|j| k, Q|i| j$ etc
- quark-antiquark e.g., $2|i| Q$ etc
- gluon-gluon e.g. $1|i| Q$ etc

Quark-gluon channel: identity changing collinear limits

Need to perform subtraction for

$$
\left|M_{6}^{0}\right|^{2} \sim \sum_{P(2, i, j, k)} M_{6}^{0}\left(1_{q}, 2_{g}, i, j, k, Q\right)
$$

Matrix element can collapse onto different initial states

- quark-gluon, e.g., $2|i| j, i|j| k, Q|i| j$ etc
- quark-antiquark e.g., $2|i| Q$ etc
- gluon-gluon e.g. $1|i| Q$ etc

But subtraction term must make a choice

$$
D_{4}^{0}(Q, i, j, 2) M_{4}^{0}(1, k, \overline{2},(\widetilde{i j Q}))
$$

or

$$
D_{4}^{0}(Q, i, j, 2) M_{4}^{0}(1, k,(\widetilde{i j Q}), \overline{2})
$$

- many spurious divergences

Double real quark-gluon channel tests

14.IF-FF double collinear qilg-gig

20.Soft + FF collinear q I g

Real-virtual quark-gluon channel tests

Preliminary dijet results

Preliminary results for full-colour "gluons only" scattering and leading colour $q \bar{q}$ scattering combined

Numerical setup and cuts:

- leading jet transverse momentum $p_{T_{1}}>80 \mathrm{GeV}$
- all other jets with at least $p_{T}>60 \mathrm{GeV}$
- jets with rapidities $|y|<4.4$ considered
- anti- k_{T} jet algorithm with $R=0.7$
- all scales taken to be common dynamical scale $\mu=p_{T_{1}}$
- MSTW2008NNLO PDF set

Inclusive jet p_{T} distribution

- NNLO correction between $\sim 15 \%$ and 26% w.r.t NLO
- K-factor at high p_{T} brought under control

Double differential inclusive jet p_{T} distribution

- NNLO correction between $\sim 15 \%$ and 26% w.r.t NLO
- similar effects in other rapidity slices

Double differential exclusive dijet distribution

- NNLO correction $\sim 20 \%$ w.r.t NLO
- similar effects in other y^{*} slices

Inclusive jet p_{T} scale dependence

Full colour gluons only contribution

Looking to the future
Gluons-only dijet cross section:

- LO: $\quad 4.82470 \times 10^{5} \mathrm{pb}$
- NLO: $8.52570 \times 10^{5} \mathrm{pb}$
- NNLO: $7.63620 \times 10^{5} \mathrm{pb}$

Gluons-only NNLO 3/2-jet?

- achievable in near future
- α_{s} determination

[Badger, Biedermann, Uwer, Yundin, '13]

Summary

Antenna subtraction a powerful and versatile method for NNLO:

- allows hadronic initial states
- can cope with several final-state jets
- analytic pole cancellation

Dijet observables have a lot to give:

- plentiful data
- much exciting phenomenology to do
- expect quark-gluon channel and phenomonological dijet results soon

Thank you for your attention!

