NNLO dijets at the LHC

James Currie University of Zürich

Loopfest XIV CUNY, New York

19/06/14

イロト イポト イヨト イヨト 三日

Based upon work with A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J. Pires, S. Wells

Jets in the Wild

(日) (四) (日) (日) (日)

æ

Jets in the Detector

Jets are the only available high energy experimental QCD object

[Phys. Rev. Lett. 35: 1609 (1975)]

$$m_{jj} \sim 2.55 \text{TeV}, p_{t_1} = 420 \text{GeV}, p_{t_2} = 320 \text{GeV}$$

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへの

Jet Cross Sections

Many process of interest at LHC involve at least one jet in the final state:

$$pp \rightarrow jj(j), H + j(j), V + j(j), tt(j), \gamma + j$$

Cross sections accurately measured and presented in differential form, e.g.

- single jet inclusive in p_T and |y|
- exclusive dijet in m_{jj} and y^*

Experimental Uncertainties

- ▶ JES uncertainty ~1% for $p_T > 150$ GeV central jets
- translates to < 10% uncertainty on single jet incl. cross section
- onus on theory community to better this

▲ロト ▲御 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ― ヨ … のへで

Constraining PDFs

Single jet inclusive x-sec, constrain PDFs, in particular the gluon at large x

< ロ > < 回 > < 三 > < 三 > < 三 > の < C</p>

Measuring α_s

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

- Separated jets, BFKL vs DGLAP
- ▶ dijet cross section
 - NLO fixed order too high
 - sensitive to higher order effects

[Badger, Biedermann, Uwer, Yundin, '13]

▲ロト ▲暦ト ▲ヨト ▲ヨト 三ヨー わえぐ

The NNLO Marketplace

In recent years many new tools developed for NNLO

▶ all have advantages and disadvantages

	analytic	FS colour	IS colour	local
antenna subtraction	 Image: A start of the start of	 Image: A second s	 ✓ 	×
STRIPPER	×	 Image: A set of the set of the	1	 Image: A set of the set of the
q_T subtraction	1	×	1	 Image: A set of the set of the
reverse unitarity	1	×	 Image: A start of the start of	-
Trócsányi et al	×	 Image: A set of the set of the	×	 Image: A start of the start of

Antenna subtraction is the only method for computing cross sections with:

ション ふゆ くは くち くち くち くう

- ▶ hadronic initial-states
- ▶ jets in the final-state (especially more than one jet)
- ▶ analytic pole cancellation

Antenna Subtraction

Subtraction at NNLO

$$d\hat{\sigma}_{ab,NNLO} = \int_{\Phi_{m+2}} d\hat{\sigma}_{ab,NNLO}^{RR} + \int_{\Phi_{m+1}} \left[d\hat{\sigma}_{ab,NNLO}^{RV} + d\hat{\sigma}_{ab,NNLO}^{MF,1} \right] + \int_{\Phi_m} \left[d\hat{\sigma}_{ab,NNLO}^{VV} + d\hat{\sigma}_{ab,NNLO}^{MF,2} \right]$$

Antenna Subtraction

Subtraction at NNLO

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{ab,NNLO} &= \int_{\Phi_{m+2}} \left[\mathrm{d}\hat{\sigma}_{ab,NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{ab,NNLO}^{S} \right] \\ &+ \int_{\Phi_{m+1}} \left[\mathrm{d}\hat{\sigma}_{ab,NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{ab,NNLO}^{T} \right] \\ &+ \int_{\Phi_{m}} \left[\mathrm{d}\hat{\sigma}_{ab,NNLO}^{VV} - \mathrm{d}\hat{\sigma}_{ab,NNLO}^{U} \right] \end{aligned}$$

$$\begin{split} \mathrm{d}\hat{\sigma}^{T}_{ab,NNLO} &= -\int_{1} \mathrm{d}\hat{\sigma}^{S}_{ab,NNLO} + \mathrm{d}\hat{\sigma}^{V,S}_{ab,NNLO} - \mathrm{d}\hat{\sigma}^{MF,1}_{ab,NNLO} \\ \mathrm{d}\hat{\sigma}^{U}_{ab,NNLO} &= -\int_{2} \mathrm{d}\hat{\sigma}^{S}_{ab,NNLO} - \int_{1} \mathrm{d}\hat{\sigma}^{V,S}_{ab,NNLO} - \mathrm{d}\hat{\sigma}^{MF,2}_{ab,NNLO} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

What is an antenna?

Constructed from physical matrix elements

$$X_3^0(i,j,k) \sim \frac{|\mathcal{M}_3^0(i,j,k)|^2}{|\mathcal{M}_2^0(I,K)|^2}, \qquad X_4^0(i,j,k,l) \sim \frac{|\mathcal{M}_4^0(i,j,k,l)|^2}{|\mathcal{M}_2^0(I,L)|^2}$$

Three main types:

▶ Quark-antiquark. Derived from the process $\gamma^* \rightarrow q\bar{q} + \cdots$

▶ Gluon-gluon. Derived from the process $H \rightarrow gg + \cdots$

・ロト ・雪ト ・ヨト ・ヨト

How are they useful?

smoothly interpolates many unresolved limits

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

▶ analytically integrable...and integrated

-Antenna Subtraction

Antenna Subtraction Toolbox

Many tools needed for implementation:

- ▶ final-final phase space mappings [Kosower '03]
- ▶ FF X₃⁰, X₄⁰, X₃¹ antennae [Gehrmann-De Ridder, Gehrmann, Glover, '04, '05]
- ▶ integrated FF antennae [Gehrmann-De Ridder, Gehrmann, Glover, '05]

 $\Rightarrow e^+e^- \rightarrow 3$ jets at NNLO [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, '07, Weinzierl '08]

Since then, extended for hadronic initial-states:

- initial-final + initial-initial mappings [Daleo, Gehrmann, Maître, '07]
- integrated IF X_3^1, X_4^0 [Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, '10]
- integrated II X⁰₄ [Boughezal, Gehrmann-De Ridder, Ritzmann, '11. Gehrmann, Ritzmann '12]

うして ふむ くは くま くち うくのく

▶ integrated II X₃¹ [Gehrmann, Monni, '11]

All tools exist for hadron-hadron scattering

[Glover, Pires, '10. Gehrmann De-Ridder, Glover, Pires, '12. Gehrmann De-Ridder, Gehrmann,

Glover, Pires, '13. JC, Glover, Wells, '13. JC, Gehrmann De-Ridder, Glover, Pires, '14.]

└─NNLO dijets

NNLO calculations under way

▶ $pp \rightarrow jj$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Pires, Wells]

- ▶ $gg \rightarrow jj$ leading colour ✓
- ▶ $gg \rightarrow jj$ sub-leading colour ✓
- ▶ $q\bar{q} \rightarrow jj$ leading colour ✓
- $qg \rightarrow jj$ leading colour nearly there!
- $gg \rightarrow jj$ leading N_F in preparation

▶
$$ep \rightarrow (2+1)j$$
 [JC, Gehrmann, Niehues]

LHC 8TeV

▶ $pp \rightarrow V + j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Morgan, Piebinga]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ● ◆ ◎ ◆

└─NNLO dijets

NNLO calculations under way

- ▶ $gg \rightarrow jj$ leading colour ✓
- ▶ $gg \rightarrow jj$ sub-leading colour ✓
- ▶ $q\bar{q} \rightarrow jj$ leading colour ✓
- $qg \rightarrow jj$ leading colour nearly there!
- $gg \rightarrow jj$ leading N_F in preparation

▶
$$ep \rightarrow (2+1)j$$
 [JC, Gehrmann, Niehues]

 $\blacktriangleright \ pp \to H+j \ [\texttt{Chen, Gehrmann, Glover, Jaquier}]$

うつん 川田 スポット エット スロッ

▶ $pp \rightarrow V + j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Morgan, Piebinga]

Example, $q\bar{q} \rightarrow gggg$

Need to perform subtraction for

$$|M_6^0|^2 \sim \sum_{P(i,j,k,l)} M_6^0(1_q,i,j,k,l,2_{\bar{q}})$$

00000

Jooo

ション ふゆ く は と く ほ と く 日 と

Double unresolved limits subtracted using,

$$\begin{split} \mathrm{d}\hat{\sigma}^{b}_{NNLO} ~\sim & \sum ~~ + ~~ D^{0}_{4}(1,i,j,k) ~~ M^{0}_{4}(\bar{1},(\widetilde{ijk}),l,2) \\ & + ~~ F^{0}_{4}(i,j,k,l) ~~ M^{0}_{4}(1,(\widetilde{ijk}),(\widetilde{jkl}),2) \\ & + ~~ D^{0}_{4}(2,l,k,j) ~~ M^{0}_{4}(1,i,(\widetilde{jkl}),\bar{2}) \\ & - ~~ \tilde{A}^{0}_{4}(1,i,k,2) ~~ M^{0}_{4}(\bar{1},\tilde{j},\tilde{l},\bar{2}) \end{split}$$

 full subtraction term successfully removes all single and double unresolved divergence

Quark-gluon channel: identity changing collinear limits

Need to perform subtraction for

$$|M_6^0|^2 \sim \sum_{P(2,i,j,k)} M_6^0(\mathbf{1}_q,\mathbf{2}_g,i,j,k,Q)$$

Matrix element can collapse onto different initial states

- \blacktriangleright quark-gluon, e.g., 2
 $|i|j,\,i|j|k,\,Q|i|j$ etc
- \blacktriangleright quark-antiquark e.g., 2|i|Q etc
- ▶ gluon-gluon e.g. 1|i|Q etc

うつん 川田 スポット エット スロッ

000000 000000

Quark-gluon channel: identity changing collinear limits

Need to perform subtraction for

$$|M_6^0|^2 \sim \sum_{P(2,i,j,k)} M_6^0(\mathbf{1}_q,\mathbf{2}_g,i,j,k,Q)$$

Matrix element can collapse onto different initial states

- \blacktriangleright quark-gluon, e.g., 2
 $|i|j,\,i|j|k,\,Q|i|j$ etc
- quark-antiquark e.g., 2|i|Q etc
- ▶ gluon-gluon e.g. 1|i|Q etc

But subtraction term must make a choice

 $D_4^0(Q, i, j, 2) \ M_4^0(1, k, \overline{2}, (\widetilde{ijQ}))$

or

 $D_4^0(Q, i, j, 2) \ M_4^0(1, k, (\widetilde{ijQ}), \overline{2})$

many spurious divergences

うつん 川田 スポット エット スロッ

└─NNLO dijets

Double real quark-gluon channel tests

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

-NNLO dijets

Real-virtual quark-gluon channel tests

~ ~ ~ ~

Preliminary dijet results

Preliminary results for full-colour "gluons only" scattering and leading colour $q\bar{q}$ scattering combined

Numerical setup and cuts:

- ▶ leading jet transverse momentum $p_{T_1} > 80 \text{ GeV}$
- all other jets with at least $p_T > 60 \text{ GeV}$
- jets with rapidities |y| < 4.4 considered
- anti- k_T jet algorithm with R = 0.7
- ▶ all scales taken to be common dynamical scale $\mu = p_{T_1}$

ション ふゆ くは くち くち くち くう

▶ MSTW2008NNLO PDF set

-NNLO dijets

Inclusive jet p_T distribution

 \blacktriangleright NNLO correction between $\sim 15\%$ and 26% w.r.t NLO

• K-factor at high p_T brought under control

NNLO dijets at the LHC

-NNLO dijets

Double differential inclusive jet p_T distribution

- ▶ NNLO correction between $\sim 15\%$ and 26% w.r.t NLO
- similar effects in other rapidity slices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

NNLO dijets at the LHC

-NNLO dijets

Double differential exclusive dijet distribution

- コト - (四下 - 4日下 - 4日下 - 日

- ▶ NNLO correction $\sim 20\%$ w.r.t NLO
- similar effects in other y^* slices

Inclusive jet p_T scale dependence

Full colour gluons only contribution

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Looking to the future

Gluons-only dijet cross section:

- LO: 4.82470×10^5 pb
- ▶ NLO: 8.52570×10^5 pb
- NNLO: 7.63620×10^5 pb

Gluons-only NNLO 3/2-jet?

- ▶ achievable in near future
- $\triangleright \alpha_s$ determination

[Badger, Biedermann, Uwer, Yundin, '13]

Summary

Summary

Antenna subtraction a powerful and versatile method for NNLO:

- allows hadronic initial states
- ▶ can cope with several final-state jets
- ▶ analytic pole cancellation

Dijet observables have a lot to give:

- ▶ plentiful data
- much exciting phenomenology to do
- ▶ expect quark-gluon channel and phenomonological dijet results soon

Thank you for your attention!

ション ふゆ くは くち くち くち くう