ELECTROWEAK HIGGS BOSON PRODUCTION IN ASSOCIATION WITH THREE JETS (A.K.A. VBF + 1 JET) AT NLO QCD

IN COLLABORATION WITH S. PLATZER, F. CAMPANERIO, AND M. SJODAHL

PRL 111, 211802, (2013), ARXIV:1311.5455

Dr. Terrance Figy George Rigg Research Associate The University of Manchester

18 June, 2014 LoopFest XIII NY City College of Technology

North American Foundation for The University of Manchester

OUTLINE

- Introduction
- Details of calculation
- Results
- Outlook

Total SM Higgs cross sections at the LHC

Total SM Higgs cross sections at the LHC

Vector Boson Fusion

Event Characteristics

- Energetic jets in the forward and backward directions $(p_T > 20 \text{ GeV})$
- Higgs decay products between tagging jets
- Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange (central jet veto: no extra jets with $p_T > 20$ GeV and $|\eta| < 2.5$)

Vector Boson Fusion Central Jet Veto

Example: Gluon fusion vs vector boson fusion

JHEP 05 (2004) 064

$$y_{\rm rel} = y_j^{
m veto} - (y_j^{
m tag \ 1} + y_j^{
m tag \ 2})/2$$

Hiji via VBF at NLO (only t-channels) Total Cross section

HJETS++

- Our aim was to compute the missing pieces (s, t, and u-channel one-loop amplitudes) in H+3 Jets production where the Higgs boson is produced via the HVV coupling (a.k.a VBF+Jet).
- Virtuals: Hexagons, Pentagons, Boxes, and Triangles
- Reals: H+6 parton amplitudes (6 quark + H, 4 quark + 2 gluons +H)

$$\begin{split} & \mathcal{C}_{ab}^{NLO}(p,\bar{p}) = \sigma_{ab}^{NLO\{4\}}(p,\bar{p} + \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) \\ & + \int_{ab}^{+} dx [\hat{\sigma}_{ab}^{NLO}]^{3}(x,xp,\bar{p}) + \hat{\sigma}_{ab}^{NLO\{3\}}(x,p,x\bar{p})] \\ & \sigma_{ab}^{NLO\{3\}}(p,\bar{p}) = \int_{3} [d\sigma] f_{b}^{b}(p,\bar{p}) + d\sigma_{ab}^{B}(p,\bar{p}) \otimes \mathbf{I}]_{\epsilon=0} \\ & \int_{0}^{1} dx \hat{\sigma}_{ab}^{NLO[3]}(x,xp,\bar{p}) = \sum_{a',0} \int_{0}^{1} dx \int_{3} [d\sigma_{ab}^{F}(xp,\bar{p})] \\ & \otimes [\mathbf{P}(x) + \mathbf{K}(x)]^{a'}]_{\epsilon=0} \end{split}$$

For the H+2,3, and 4 jet amplitudes we use the in-house spinor library of Matchbox.

HJETS++

- Matchbox [S. Platzer and S. Gieseke, arXiv: 1109.6256]
 - Catani-Seymour Dipole subtraction [hep-ph/9605323]
 - Subtractive and POWHEG style matching to parton shower
 - ColorFull [M. Sjodahl, arXiv:1211.2099, http://home.thep.lu.se/~malin/ ColorMath.htm#ColorMath, ColorFull will soon be public.]
- Tensorial Reduction [F. Capanario, arXiv:1105.0920]
- Scalar Loop Integrals: OneLOop [A. van Hameren arXiv:1007.4716]

THE RESULTS

- Input parameters and selection cuts.
- Scale variations for total cross section.
- Kinematic distributions.

INPUT PARAMETERS

- Ecm=14 TeV (proton proton LHC)
- At least three anti-KT D=0.4 (E-scheme recombination) of 20 GeV and rapidity within -4.5 and 4.5 using FastJet [arXiv: 0802.1189, arXiv:1111.6097]
- PDF choices: CT10 for NLO and CTEQ 6L1 for LO [arXiv:hep-ph/0201195, arXiv:1007.2241]
- Scales: W-boson mass (MW) and sum of transverse momentum of reconstructed jets (HT)

y_i : rapidity ϕ_i : azimuthal angle

 p_i : four momentum vector of i

 $\Delta y_{ij} = |y_i - y_j|$: absolute rapidity difference between *i* and *j*

 $\Delta \phi_{ij} = |\phi_i - \phi_j|$: absolute azimuthal angle difference between *i* and *j*

 $m_{ij} = \sqrt{(p_i + p_j)^2}$: invariant mass of *i* and *j*

Scale Variations on Integrated Cross-sections

 $\mu_R = \mu_F = H_T/2 \ (M_W/2)$: 30% (24%) at LO and 2% (8%) at NLO

 $\sigma_{LO} = 1520(8)^{+208}_{-171}$ fb

 $\sigma_{NLO} = 1466(17)^{+1}_{-35}$ fb

JET DISTRIBUTIONS

$$z_3^{\star} = (y_3 - \frac{1}{2}(y_1 + y_2))/(y_1 - y_2)$$

Rapidity separation

 Δy_{23}

Higgs Boson Distributions

Transverse momentum

Rapidity

Higgs Boson Distributions

Jet Masses

H+3 JETS AND H+2 JETS

Distributions with VBF cuts

Mass of first and third jet

- $m_{j_1 j_2} > 600 \text{ GeV}$ $\Delta y_{j_1 j_2} > 4.0$

Distributions with VBF cuts

- $m_{j_1 j_2} > 600 \text{ GeV}$ $\Delta y_{j_1 j_2} > 4.0$

Distributions with VBF cuts

- $m_{j_1 j_2} > 600 \text{ GeV}$ $\Delta y_{j_1 j_2} > 4.0$

- $m_{j_1 j_2} > 600 \text{ GeV}$ $\Delta y_{j_1 j_2} > 4.0$

Mass of the third jet

OUTLOOK

- NLO + Parton Shower matching
- Perform comprehensive phenomenology for Run 2
- Matching H+2 jets and H+3 jets to parton shower

Parton-shower effects on Higgs boson plus 3 jets (arXiv:1405.6950) [Jager, Schissler, Zeppenfeld]

Comparison to VBFNLO

