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Inclusive production of single, electroweak 
boson is the most basic hard-scattering 
process at hadron colliders.

• QCD benchmark
• PDF determination, MW determination
• Jet-energy calibration
• Search for New Physics
• ...

see Michael Schmitt’s Talk
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New measurements for Z production

0.5% Precision at low pT, few % at higher pT.  
Among the most precise measurements at LHC!

Measurement of the Z/γ* transverse 
momentum 

02/06/14 Dimitra Tsionou 4 

!  Motivation ! Measurement of W mass 
!  Very clean signature and high cross section 

!  Measurement in fiducial region 
!  pT,l>20 GeV, 66<mll<116, |η|<2.4 
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Talk based on
• Factorization theorem, NNLL resummation for 

photon production TB, Schwartz ’09

• W/Z to N3LLpartial+NLO TB, Lorentzen, Schwartz ’12

• Electroweak Sudakov effects TB, Garcia Tormo ’13

• Two-loop jet functions TB Neubert ’06, TB, Bell ’11 two-
loop soft function TB, Bell, Marti ’12

• New: Two-loop hard function, full N3LL+NLO for 
W/Z and Higgs TB, Bell, Lorentzen, Marti ’13

• First resummation of “3 jet obs.” at this accuracy

Thursday, June 19, 14



Fixed order at qT ≠ 0
• LO

• NLO known since the 80’s. (Ellis, Martinelli, Petronzio’83; Arnold Reno ’89; Gonsalves, 

Pawlowski, Wai ’89) Implemented in numerical codes.

• NNLO computations in progress.

• 2-loop virtual corrections known (Garland, Gehrmann, Glover, Koukoutsakis 
and Remiddi ’01 ’02, Gehrmann and Tancredi ’11 + Weihs ’13;  Gehrmann, Jaquier, Glover and Koukoutsakis ’11)

• Difficulty: singularity structure of real emissions!

• First results for gg → H + X Boughezal et al. ’13

Introduction: W/Z/γ production

Xavier Garcia i Tormo SCET’13 - Duke University. Durham NC - March 14 2013 – 2 / 19

Inclusive production of W/Z/γ at hadron colliders

H1 +H2 → W/Z/γ +X

Basic hard-scattering process. We want to study the pT
spectrum of the electroweak boson

2 channels at Born level:

Current work toward obtaining N2LO QCD corrections to the pT
spectrum
NLO is well known, and implemented in numerical integration
programs: FEWZ (Melnikov, Petriello’06; Gavin, Li, Petriello, Quackenbush’10), DYNNLO

(Catani, Cieri, Ferrera, de Florian, Grazzini’09), QT (Gonsalves), MCFM (Campbell, Ellis, Williams)

update: talks by Fabrizio Caola and Matthieu Jaquier 
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Simplification near threshold

Real emission simplify drastically near the 
partonic threshold             :

• single, low-mass jet, recoiling against V,
• accompanied by soft radiation

Use SCET to compute real emissions.

V

m2
X ! 0

pT

Thursday, June 19, 14



Cross section at large pT near the partonic threshold mX2 → 0 
Factorization theorem

p1

p2

pJ

q

Figure 1: Left: Factorization of the scattering amplitude near the partonic threshold. Right:
Examples of NLO corrections to the hard, jet and soft function (from top to bottom). The
thick blue lines denote partons collinear to the directions of the jet or the incoming hadrons.
Soft emissions are pictured by thin red gluon lines.

cross section σ̂(0)(û, t̂). The hadronic cross section is obtained after convoluting with PDFs
and summing over all partonic channels (see Sec. 2.1 below).

The factorization theorem in Eq. (4) is depicted in Figure 1. The hard function H contains
the virtual corrections to the underlying hard-scattering process. There are two channels
relevant for vector boson production, the Compton (qg → V q) and annihilation (qq̄ → V g)
channels, and the corresponding hard functions are related by crossing symmetry. A sample
NLO contribution to the hard function in the annihilation channel is the top one-loop diagram
on the right-hand side of Figure 1. For the photon case, the one-loop hard function was given
in [18], and in [19] it was outlined how the hard function can be obtained for MV ̸= 0. For
completeness, we list the one-loop result for both the Compton and annihilation channel in
the Appendix. The jet function J encodes the collinear emissions inside the final state jet,
while collinear emissions along the initial state partons are absorbed into the PDFs. The jet
function is obtained from the imaginary part of the two-point function of collinear fields (see
the middle Feynman diagram on the right in Figure 1). The two-loop results for the inclusive
quark and gluon jet functions relevant here were obtained in [33] and [34]. The last Feynman
diagram in the figure shows a NLO correction to the soft function, which describes the soft
emissions from the energetic partons in both the initial and final state, which are encoded in
Wilson lines along the corresponding directions. The corresponding soft function was recently
computed to two loops in [35].

In the remainder of this section, we give the resummed result for the cross section and dis-
cuss its numerical implementation. We first set up the integration over the parton momentum
fractions in a form suited for threshold resummation and then give the resummed result, as
well as the matching to fixed-order perturbation theory. Finally, we discuss how subtractions
can be used to improve the convergence of the numerical integrations.

4

H
soft emissions

collinear emissions

W/Z/H
TB, Schwartz ’09

1 Introduction

Since Higgs bosons are dominantly produced via a loop process in the Standard Model, Higgs
physics is a sensitive probe of new physics. Precision studies of Higgs properties are a central
part of the physics program at the CERN Large Hadron Collider (LHC), and the second
LHC run will allow for new measurements with significantly higher statistics. On the theory
side, Higgs physics is challenging, because Higgs cross sections suffer from large perturbative
corrections and higher-order corrections are needed to achieve reliable theoretical predictions.
For the total cross section, there are ongoing efforts to compute the third-order terms in the
perturbative expansion. Recently, the next-to-next-to-next-to-leading (N3LO) result in the
threshold limit has been obtained, which is an important first step towards the full N3LO
result for the total cross section [1]. At non-zero transverse momentum pT of the Higgs
boson, on the other hand, the cross section is currently only known to NLO, with ongoing
efforts to extend the result to NNLO. In fact, for the dominant gg channel, NNLO results
were presented about a year ago in [2]. In the present paper, we will compute the rate for
Higgs-boson production at non-zero transverse momentum pT to NNLO in the threshold limit.

We recently presented all ingredients to perform threshold resummation at next-to-next-
to-next-to-leading logarithmic (N3LL) accuracy for electroweak boson production at large
transverse momentum [3]. At this accuracy, the resummed result includes the full NNLO
threshold cross section. Near threshold, the electroweak boson recoils against a low-mass jet
and the partonic cross section factorizes into a hard function, a jet function and a soft function.
For the channel a + b → H + jc, the factorization formula takes the form

ŝ
dσ̂

dû dt̂
= Hab(û, t̂) (Jc ⊗ Sab)(m

2
X) , (1)

where the partonic Mandelstam variables are ŝ = (pa + pb)2, t̂ = (pa − q)2 and û = (pb − q)2,
with q the Higgs boson momentum, and q2 = M2

H . The hard function Hab(û, t̂) captures the
purely virtual corrections to the hard scattering process, while the jet and soft functions Jc

and Sab describe the real emissions, which can either be collinear to the final state jet or soft.
The convolution of the jet and soft functions depends on the invariant mass of the partonic
final state jet m2

X , which goes to zero in the threshold limit. The jet and soft functions were
computed to two-loop order earlier in [4, 5] and [6]. In our recent paper [3], we extracted the
final ingredient for N3LL resummation, namely the two-loop hard functions, from the results
for the two-loop helicity amplitudes for theses processes [7, 8].

Our results for W and Z production have been implemented into a public code PeTeR

[9]. In the meantime, we have also implemented the resummation as well as the NLO result
for Higgs production into a new release of this code, and we are now in the position to present
numerical results also in this case. For vector bosons, the two-loop corrections turned out to
be moderate, but in contrast we find very large corrections for Higgs production. In Section
2, we show that these corrections are associated with the hard function, and we suggest
a way to improve the perturbative convergence using renormalization group methods. We
also determine the appropriate scale choices for the different ingredients in the factorization
formula. Based on these results, we then give in Section 3 numerical predictions for the cross
section at large transverse momentum. Our results are valid in the large-mt limit, and we

1
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Threshold cross section

• Theorem gives leading terms for mX2 → 0:  
Singular distributions in mX2.

• Numerically dominant.
• In addition, there are regular contributions. 

Known at NLO.

δ(m2
X) and the higher coefficients 0 < i ≤ 2n the ⋆-distributions arising in the expansion (58).

The coefficients h(n) and p(n)i depend on the partonic channel, but in the following we suppress
the channel indices a, b and c for better readability. To two-loop order, the cross section then
has the structure

d2σ̂sing

dy dp2T
= σ̂(0)

{

δ(m2
X) +

αs

4π

[

δ(m2
X)
(

p(1)0 + h(1)
)

+

[

1

m2
X

]

⋆

p(1)1 +

⎡

⎣

ln
m2

X

µ2

m2
X

⎤

⎦

⋆

p(1)2

]

+
(αs

4π

)2
[

δ(m2
X)
(

h(2) + h(1) · p(1)0 + p(2)0

)

+

[

1

m2
X

]

⋆

(

h(1) · p(1)1 + p(2)1

)

+

⎡

⎣

ln
m2

X

µ2

m2
X

⎤

⎦

⋆

(

h(1) · p(1)2 + p(2)2

)

+

⎡

⎣

ln2 m2
X

µ2

m2
X

⎤

⎦

⋆

p(2)3 +

⎡

⎣

ln3 m2
X

µ2

m2
X

⎤

⎦

⋆

p(2)4

]}

. (62)

The explicit form of the one-loop coefficients in the above formula is

p(1)0 = −
π2 γcusp

0

12
(CJ + 4CS) + cJ1 + cS1 + 2 γS

0 ln
µ

pT
+ 2 γcusp

0 CS ln2 µ

pT
, (63)

p(1)1 = γJ
0 + 2γS

0 + 4 γcusp
0 CS ln

µ

pT
, (64)

p(1)2 = γcusp
0 (CJ + 4CS) . (65)

The lengthy two-loop coefficients p(2)i are listed in Appendix C. The Casimir operators relevant
for the different channels are

CSqq̄ = CF −
CA

2
, CSqg =

CA

2
, CSgg =

CA

2
, CJg = CA , CJq = CF , (66)

and the anomalous dimension coefficients are given by

γ
Jg
0 = −β0 , γ

Jq
0 = −3CF , γ

Sqq̄

0 = 0 , γ
Sqg

0 = 0 , γ
Sgg

0 = 0 . (67)

The nonlogarithmic one-loop coefficients of the gluon [17] and quark [46, 47] jet functions read

cJg1 = CA

(

67

9
−

2π2

3

)

−
20

9
TF nf , cJq1 = (7−

2π2

3
)CF , (68)

while the coefficients for the soft function read [17]

cSqq̄

1 =

(

CF −
CA

2

)

π2 , cSqg

1 =
π2CA

2
, cSgg

1 =
π2CA

2
. (69)

The two-loop coefficient for the quark jet function has been calculated in [8], for the gluon
jet function in [9], and the two-loop coefficients for the soft functions have been calculated in
[10]; they are listed in Appendix B.

17
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Ingredients for N3LL
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Resummation at N3LL
µh

µj

µs

µ

HI(û, t̂)

JI(m2
X)

SI(k)

f1(x1)f2(x2)

Figure 2: Resummation by RG evolution.

depends on the scale via the coupling constant αs(µ). The evolution factor UHqq̄(µh, µ) for the
above combination takes the form

lnUHqq̄(µh, µ) = 2

(
CF +

CA

2

)[
2S(µh, µ)− Acusp(µh, µ) ln

ŝ

µ2
h

]
− 2AHqq̄(µh, µ) , (16)

with

S(ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
, Acusp(ν, µ) = −

∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)
. (17)

Explicit expressions for these functions in RG-improved perturbation theory can be found
in [32]. The function AHqq̄ is the same as Acusp(ν, µ) with

γHqq̄ = 2γq + γg −
CA

2
ln

ŝ2

t̂û
γcusp (18)

replacing γcusp. The quark and gluon anomalous dimensions γq and γg are given to three-loop
order in [37]. The evolution factor UHqg can be obtained from the above results using the
crossing relation ŝ ↔ −û at fixed t̂ , and UHgq follows from UHqg using t̂ ↔ û. The resummed
results for the jet and soft functions can be obtained by solving their RG equations in Laplace
space [31]. For the gluon jet function, for example, the result takes the form

Jg(p
2, µ) = UJg(µj, µ) j̃g(∂ηjg )

1

p2

(
p2

µ2
j

)ηjg e−γEηjg

Γ(ηjg)
,

where j̃g is the Laplace transform of the momentum-space jet function and

UJg(µj, µ) = exp[−4CAS(µj, µ) + 2AJg(µj, µ)] , (19)

ηjg = 2CAAcusp(µj, µ) .

7

• Two-loop H, J, S

• Three-loop anomalous dimensions γH , γJ, γS.  All known. 

• γH follows from two-jet result using factorization constraints 
TB, Neubert ’09.

• Four-loop γcusp

• Not available, but numerically insignificant, use Padé
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Soft and jet functions
Jet functions (imaginary part of two-point functions)

Soft function
n1

n2

nJ

D1 D2 D3

D4 D5 D6

D7,1 D7,2

Figure 2: Feynman diagrams that contribute to the soft function up to NNLO. In addition
there are mirror symmetrical graphs, which we take into account by multiplying each diagram
Di with a symmetry factor fi, where f1 = f2 = f3 = f5 = 2, f4 = 1 and f6 = f7 = 4.
Additional diagrams, in which gluons attach to the jet Wilson line, vanish, see text.

Its matrix element can be simplified as follows

⟨ 1′ 2′ J ′ | (−T1 · T2) | 1 2 J ⟩color = ⟨ 1′ 2′ J ′ |T1 · T1 + T1 · TJ | 1 2 J ⟩color

= C1 ⟨ 1′ 2′ J ′| 1 |1 2 J ⟩color + ⟨ 1′ 2′ J ′ |T1 · TJ | 1 2 J ⟩color

=
1

2
(C1 + C2 − CJ) ⟨ 1′ 2′ J ′ | 1 |1 2 J ⟩color , (7)

where we have indicated with primes the different color state of the conjugate hard amplitude.
In the first line, color conservation

∑
i T

a
i = 0 was used. The Casimir operator in the second

line is T1 · T1 = C11. The third line follows after applying color conservation two more times.

4

3 Wilson lines + ...
Figure 2: Two-loop diagrams that arise in the light-cone gauge calculation.

one-loop coefficient is [11]

J1(ϵ) =

[
CA

(
3

ϵ
−

9

4

)
− nfTF

]
eϵγE

8Γ(2− ϵ)2 Γ(ϵ)

Γ(4− 2ϵ)
, (12)

and the two-loop coefficients are found to be

JAA(ϵ) =
8

ϵ4
+

55

3ϵ3
+

1

ϵ2

(
−
π2

3
+

152

3

)
+

1

ϵ

(
−
184ζ3
3

−
11π2

6
+

3638

27

)

−
23π4

180
−

1496ζ3
9

−
161π2

27
+

57415

162
,

JAf(ϵ) = −
20

3ϵ3
−

188

9ϵ2
+

1

ϵ

(
2π2

3
−

536

9

)
+

400ζ3
9

+
74π2

27
−

12880

81
, (13)

JFf(ϵ) = −
2

ϵ
+ 16ζ3 −

55

3
,

Jff(ϵ) =
16

9ϵ2
+

160

27ϵ
−

8π2

27
+ 16 .

The result for the bare function Kg takes the form

iKg(p
2) =

Zααs

(4π)

(
µ2

−p2 − i0

)ϵ

K1(ϵ) +
Z2

αα
2
s

(4π)2

(
µ2

−p2 − i0

)2ϵ [
C2

AKAA(ϵ) + CAnfTFKAf(ϵ)
]
.

(14)
Only a single color-structure appears at one-loop

K1(ϵ) = −CA eϵγE
4Γ(2− ϵ)Γ(−ϵ)Γ(ϵ)

Γ(2− 2ϵ)
, (15)

5

Figure 1: Two-loop diagrams contributing to the jet function in QCD. Gluons emitted from the
crossed circles originate from the Wilson lines. Not shown are additional diagrams resulting from
mirror images in which the two external points are exchanged. The first diagram is the full fermion
two-point function, not just the one-particle irreducible part.

2.1 Evaluation of the two-loop diagrams
We first discuss the evaluation of the bare quantity jbare(Q2) and later perform its renormalization.
Let us begin by quoting the result for the one-loop master integral

∫
ddk

(−1)−a−b−c
(
k2 + i0

)a [(k + p)2 + i0
]b (n̄ · k)c

= iπ
d
2
(
−p2 − i0

) d
2−a−b (n̄ · p)−c J(a, b, c) , (8)

with

J(a, b, c) =
Γ(d2 − b) Γ(

d
2 − a − c) Γ(a + b −

d
2 )

Γ(a) Γ(b) Γ(d − a − b − c)
. (9)

At two-loop order, the most general integral we need is (omitting the “+i0” terms for brevity)
∫
ddk

∫
ddl

(−1)−a1−a2−a3−b1−b2−b3−c1−c2
(
k2

)a1 (l2
)a2 [(k − l)2

]a3 [(k + p)2
]b1 [(l + p)2

]b2 [(k + l + p)2
]b3 (n̄ · k)c1 (n̄ · l)c2

= −πd
(
−p2

)d−a1−a2−a3−b1−b2−b3 (n̄ · p)−c1−c2 J(a1, a2, a3, b1, b2, b3, c1, c2) . (10)

We use the same standard reduction techniques as in the two-loop calculation of the soft function [2]
to express all integrals we need for the evaluation of the diagrams in Figure 1 in terms of four master
integrals Mn. Introducing the dimensional regulator ϵ = 2 − d/2, we obtain

M1 = J(1, 1, 0, 0, 0, 1, 0, 0) =
Γ3(1 − ϵ) Γ(2ϵ − 1)
Γ(3 − 3ϵ)

,

3

TB, Neubert ’06

Quark jet Gluon jet

TB, Bell ’11

TB, Bell, Marti ’12
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Hard function

Contains 2-loop virtual corrections. Computed quite some time ago. 
Garland, Gehrmann, Glover et al. ’02, ...

• Helicity amplitudes, given in electronic form.

Assemble two-loop hard function from two-loop helicity amps.

• Use C and P and analytic continuation to obtain all helicity 
amplitudes from minimal set. 

• Convert from Catani IR subtraction to MS IR subtraction.

p1

p2

pJ

q

Figure 1: Left: Factorization of the scattering amplitude near the partonic threshold. Right:
Examples of NLO corrections to the hard, jet and soft function (from top to bottom). The
thick blue lines denote partons collinear to the directions of the jet or the incoming hadrons.
Soft emissions are pictured by thin red gluon lines.

cross section σ̂(0)(û, t̂). The hadronic cross section is obtained after convoluting with PDFs
and summing over all partonic channels (see Sec. 2.1 below).

The factorization theorem in Eq. (4) is depicted in Figure 1. The hard function H contains
the virtual corrections to the underlying hard-scattering process. There are two channels
relevant for vector boson production, the Compton (qg → V q) and annihilation (qq̄ → V g)
channels, and the corresponding hard functions are related by crossing symmetry. A sample
NLO contribution to the hard function in the annihilation channel is the top one-loop diagram
on the right-hand side of Figure 1. For the photon case, the one-loop hard function was given
in [18], and in [19] it was outlined how the hard function can be obtained for MV ̸= 0. For
completeness, we list the one-loop result for both the Compton and annihilation channel in
the Appendix. The jet function J encodes the collinear emissions inside the final state jet,
while collinear emissions along the initial state partons are absorbed into the PDFs. The jet
function is obtained from the imaginary part of the two-point function of collinear fields (see
the middle Feynman diagram on the right in Figure 1). The two-loop results for the inclusive
quark and gluon jet functions relevant here were obtained in [33] and [34]. The last Feynman
diagram in the figure shows a NLO correction to the soft function, which describes the soft
emissions from the energetic partons in both the initial and final state, which are encoded in
Wilson lines along the corresponding directions. The corresponding soft function was recently
computed to two loops in [35].

In the remainder of this section, we give the resummed result for the cross section and dis-
cuss its numerical implementation. We first set up the integration over the parton momentum
fractions in a form suited for threshold resummation and then give the resummed result, as
well as the matching to fixed-order perturbation theory. Finally, we discuss how subtractions
can be used to improve the convergence of the numerical integrations.

4

p1

p2

pJ

q

Figure 1: Left: Factorization of the scattering amplitude near the partonic threshold. Right:
Examples of NLO corrections to the hard, jet and soft function (from top to bottom). The
thick blue lines denote partons collinear to the directions of the jet or the incoming hadrons.
Soft emissions are pictured by thin red gluon lines.

cross section σ̂(0)(û, t̂). The hadronic cross section is obtained after convoluting with PDFs
and summing over all partonic channels (see Sec. 2.1 below).

The factorization theorem in Eq. (4) is depicted in Figure 1. The hard function H contains
the virtual corrections to the underlying hard-scattering process. There are two channels
relevant for vector boson production, the Compton (qg → V q) and annihilation (qq̄ → V g)
channels, and the corresponding hard functions are related by crossing symmetry. A sample
NLO contribution to the hard function in the annihilation channel is the top one-loop diagram
on the right-hand side of Figure 1. For the photon case, the one-loop hard function was given
in [18], and in [19] it was outlined how the hard function can be obtained for MV ̸= 0. For
completeness, we list the one-loop result for both the Compton and annihilation channel in
the Appendix. The jet function J encodes the collinear emissions inside the final state jet,
while collinear emissions along the initial state partons are absorbed into the PDFs. The jet
function is obtained from the imaginary part of the two-point function of collinear fields (see
the middle Feynman diagram on the right in Figure 1). The two-loop results for the inclusive
quark and gluon jet functions relevant here were obtained in [33] and [34]. The last Feynman
diagram in the figure shows a NLO correction to the soft function, which describes the soft
emissions from the energetic partons in both the initial and final state, which are encoded in
Wilson lines along the corresponding directions. The corresponding soft function was recently
computed to two loops in [35].

In the remainder of this section, we give the resummed result for the cross section and dis-
cuss its numerical implementation. We first set up the integration over the parton momentum
fractions in a form suited for threshold resummation and then give the resummed result, as
well as the matching to fixed-order perturbation theory. Finally, we discuss how subtractions
can be used to improve the convergence of the numerical integrations.

4

TB, Bell, Lorentzen, Marti ’13
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Conversion Catani to MS
MS subtraction

Catani subtraction

detail, using the example of the purely gluonic channel which arises for Z and γ production
at one-loop and contributes at NNLO to the cross section. The presence of SCET operators
mediating the gg → V g process was pointed out in [17], but in contrast to the operators for
qq̄ → V g and qg → V q, the purely gluonic operators were not explicitly given since they are
not needed at NNLL accuracy. According to our considerations from above, the leading-power
operators for gg → V g (and for gg → Hg) have the form

Oνρσ
abc (x; t1, t2, tJ) = Aν,a

1⊥(x+ t1n̄1)Aρ,b
2⊥(x+ t2n̄2)Aσ,c

J⊥(x+ tJ n̄J) . (2)

The operators for the quark channels such as qq̄ → V g have the same structure, but involve
a quark field, an anti-quark field and a gluon. In SCET the collinear operators are smeared
over the directions associated with the large external momenta, and the associated hadronic
vector current Jµ(x) mediating gg → V g consists of a convolution of the Wilson coefficients
with the smeared operators

Jµ(x) =

∫

dt1 dt2 dtJ C
abc
µνρσ(t1, t2, tJ)O

νρσ
abc (x; t1, t2, tJ) . (3)

Because we have left the color and Lorentz structure of the fields in the operators open,
the Wilson coefficients have Lorentz and color indices, too. These are contracted with the
operators to ensure that J µ(x) transforms as a singlet under color and a vector (or axial-
vector) under the Lorentz group. The color structure of the Wilson coefficients can be either
symmetric or antisymmetric. In the first case, it is proportional to dabc, in the second case
proportional to the structure constants fabc. Working with open Lorentz and color indices is
convenient because the coefficients Cabc

µνρσ are directly related to helicity amplitudes in color
space. To see this, we perform the matching using on-shell gg → V g amplitudes. Since
the loop integrals in the effective theory are all scaleless for on-shell external momenta, the
effective theory amplitudes reduce to tree-level matrix elements multiplied by the Wilson
coefficients. Furthermore, because the different collinear sectors no longer interact after soft-
collinear decoupling, the matrix element factorizes into individual collinear matrix elements,
which in a given sector have the form

⟨0| Aν,a
j⊥(tjn̄j) |pi; ai,λi⟩ = δij δaia e

−itin̄i·pi ϵν(pi,λi) (4)

for an incoming transverse gluon field. Performing the integrations over the variables ti, one
then finds that the Fourier transforms of the Wilson coefficients Cabc

µνρσ(t1, t2, tJ), contracted
with the external polarization vectors, are equal to the helicity amplitudes.

The vanishing of the loop corrections in the effective theory implies that in the relevant
integrals, the infrared (IR) and ultraviolet (UV) singularities exactly cancel each other. Since
the IR singularities of QCD and SCET are the same, this further implies that the UV singu-
larities of SCET Wilson coefficients are identical to the IR singularities of QCD amplitudes.
As a consequence the IR singularities of n-point amplitudes in d = 4− 2ϵ dimensions can be
renormalized multiplicatively [26, 27]

|Mren({p}, µ)⟩ = lim
ϵ→0

Z−1(ϵ, {p}, µ) |M(ϵ, {p})⟩ , (5)

3

poles only

where the renormalization factor Z is a matrix in color space. It is spin-independent, but
depends logarithmically on the external momenta {p} ≡ p1, . . . , pn. The renormalized am-
plitude |Mren({p}, µ)⟩ is equal to the renormalized Wilson coefficient of the leading-power
SCET operator with the same quantum numbers as the external states in the amplitude. The
inverse of the Z-factor can be written in terms of the anomalous dimension matrix [26]

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs) , (6)

where the sum runs over unordered tuples (i, j) of distinct partons, Ti is the color generator
associated with the i-th parton in the scattering amplitude, which acts on the color index of
that parton, and sij ≡ 2σijpi · pj + i0, where the sign factor σij = +1 if the momenta pi and pj
are both incoming or outgoing, and σij = −1 otherwise. The product Ti·Tj ≡ T a

i T a
j is summed

over a. Generators associated with different particles trivially commute, Ti · Tj = Tj · Ti for
i ̸= j, and T 2

i = Ci is given in terms of the quadratic Casimir operator of the corresponding
color representation, i.e. Cq = Cq̄ = CF and Cg = CA. For more details on the color-space
formalism, see [29, 30].

In [2, 11, 12, 13] the results were given in terms of finite helicity amplitudes obtained
after removing the IR singularities using Catani’s subtraction formula [31]. In the following,
we will relate these expressions to the renormalized SCET Wilson coefficients. The entire
procedure can be viewed as a scheme change from Catani’s subtraction scheme to a standard
MS subtraction of the singularities.

2.1 Conversion to MS scheme

We first reconstruct the IR-divergent part of the two-loop amplitudes and will then perform the
renormalization. We write the expansion of the UV-renormalized, on-shell n-parton scattering
amplitude with IR singularities regularized in d = 4− 2ϵ dimensions as

|M(ϵ, {p})⟩ ≡ M(0) +
αs

2π
M(1)(ϵ) +

(αs

2π

)2
M(2)(ϵ) +O(α3

s) , (7)

where αs ≡ αs(µ) is the renormalized coupling constant. Note that the superscript (i) refers in
this section to an expansion in units of αs/2π, which is the notation adopted in the literature
on two-loop four-point functions [2, 11, 12, 13]. In the SCET literature, the perturbative
expansion is usually written in αs/4π. Throughout this section, we will expand in αs/2π to be
compatible with the literature on the amplitudes, but we will switch to the standard SCET
notation when we present our result for the cross section in Section 4 and in the appendices.

The helicity amplitudes in [2, 11, 12, 13] were constructed using Catani’s IR-subtraction
formula [31], which states that the product

|Mfin({p}, µ)⟩ =
[

1−
αs

2π
I(1)(ϵ)−

(αs

2π

)2
I(2)(ϵ) + . . .

]

|M(ϵ, {p})⟩ (8)

is free of IR poles through O(α2
s). The amplitudes are however different from the MS-

renormalized amplitudes |Mren({p}, µ)⟩ in (5), because the subtraction operators I(n)(ϵ) ≡

4arbitrarily high orders in ε
given by 
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Result for conversion

C0 and C1 from ε expansion of I(1)(ε)

See 1309.3245 for details.

I(n)(ϵ, {p}, µ) contain terms of arbitrarily high orders in ϵ. The explicit form of the I(n)(ϵ)
can be found in Appendix A. The above relation can be inverted to reconstruct the expansion
coefficients of the IR-divergent amplitude |M(ϵ, {p})⟩ as

M(1)(ϵ) = M(1), fin + I(1)(ϵ )M(0) ,

M(2)(ϵ) = M(2),fin + I(1)(ϵ)
(

M(1),fin + I(1)(ϵ )M(0)
)

+ I(2)(ϵ)M(0) . (9)

The SCET Wilson coefficient is now obtained by multiplying the IR-divergent amplitude with
the inverse of the Z-factor. With a slight abuse of notation, we write the expansion of the
inverse Z-factor in the form

Z−1(ϵ, {p}, µ) = 1 +
αs

2π
Z(1)(ϵ) +

(αs

2π

)2
Z(2)(ϵ) +O(α3

s) . (10)

The explicit form of the coefficients Z(n)(ϵ) is given in Appendix A. The above relations can
be used to express the MS-renormalized amplitude |Mren({p}, µ)⟩ in terms of the IR-finite
amplitude |Mfin({p}, µ)⟩ given in [2, 11, 12, 13]. At one-loop order, the conversion relation
reads

M(1),ren = M(1),fin +
(

I(1)(ϵ) +Z(1)(ϵ)
)

M(0)

= M(1),fin + C0M(0) , (11)

where C0 is the finite term of Catani’s one-loop subtraction operator I(1)(ϵ),

C0 =
∑

(i,j)

Ti · Tj

16

[

γcusp
0 ln2 µ2

−sij
−

4γi
0

Ci

ln
µ2

−sij

]

−
π2

96
Γ′
0 , (12)

with one-loop anomalous dimensions γcusp
0 = 4, γq

0 = −3CF , γ
g
0 = −β0 and Γ′

0 = −γcusp
0

∑

i Ci.
At two-loop order, the conversion relation takes the form

M(2),ren = M(2),fin +
(

I(1)(ϵ) +Z(1)(ϵ)
)

M(1),fin

+
(

I(2)(ϵ) +
(

I(1)(ϵ) +Z(1)(ϵ)
)

I(1)(ϵ) +Z(2)(ϵ)
)

)M(0)

= M(2),fin + C0M(1),fin +

{

1

2
C
2
0 +

γcusp
1

8

(

C0 +
π2

128
Γ′
0

)

+
β0

2

(

C1 +
π2

32
Γ0 +

7ζ3
96

Γ′
0

)

−
1

8

[

Γ0,C1

]

}

M(0) , (13)

and the corresponding expression for C1 and the two-loop anomalous dimensions are summa-
rized in Appendix A. In the appendix, we also give an explicit formula for the commutator
[Γ0,C1] in terms of three-particle correlations.

The above relations are valid for general n-parton scattering amplitudes. For n = 3 colored
partons, which is the relevant case here, one can use color conservation to express the dipoles
in terms of the Casimir operators associated with the three external legs,

T1 · T2 = −
1

2
(C1 + C2 − C3) ≡ C12 , etc. (14)
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The above relations are valid for general n-parton scattering amplitudes. For n = 3 colored
partons, which is the relevant case here, one can use color conservation to express the dipoles
in terms of the Casimir operators associated with the three external legs,

T1 · T2 = −
1

2
(C1 + C2 − C3) ≡ C12 , etc. (14)

5

γq
1 = C2

F

(

−
3

2
+ 2π2 − 24ζ3

)

+ CFCA

(

−
961

54
−

11π2

6
+ 26ζ3

)

+ CFTFnf

(

130

27
+

2π2

3

)

,

γg
0 = −β0 , (A.4)

γg
1 = C2

A

(

−
692

27
+

11π2

18
+ 2ζ3

)

+ CATFnf

(

256

27
−

2π2

9

)

+ 4CFTFnf .

The renormalization factor Z is obtained by solving its RG equation, which is driven by
the anomalous dimension matrix Γ in (6). The two-loop expression has the form

lnZ =
αs

4π

[

Γ′
0

4ϵ2
+

Γ0

2ϵ

]

+
(αs

4π

)2
[

−
3β0Γ′

0

16ϵ3
+

Γ′
1 − 4β0Γ0

16ϵ2
+

Γ1

4ϵ

]

+O(α3
s) (A.5)

with

Γ′(αs) ≡
∂

∂ lnµ
Γ({p}, µ) = −γcusp(αs)

∑

i

Ci . (A.6)

Expanding the inverse Z-factor in units of αs/2π,

Z−1(ϵ, {p}, µ) = 1 +
αs

2π
Z(1)(ϵ) +

(αs

2π

)2
Z(2)(ϵ) +O(α3

s) , (A.7)

one obtains

Z(1)(ϵ) = −
Γ′
0

8ϵ2
−

Γ0

4ϵ
,

Z(2)(ϵ) =
Γ′2
0

128ϵ4
+

3β0Γ′
0 + 2Γ′

0Γ0

64ϵ3
+

4β0Γ0 + 2Γ2
0 − Γ′

1

64ϵ2
−

Γ1

16ϵ
. (A.8)

The one-loop subtraction operator appearing in Catani’s formula for the IR divergences is

I(1)(ϵ) =
eϵγE

Γ(1− ϵ)

∑

i

(

1

ϵ2
−

γi
0

2ϵ

1

Ci

)

∑

j ̸=i

Ti · Tj

2

(

µ2

−sij

)ϵ

(A.9)

≡
Γ′
0

8ϵ2
+

Γ0

4ϵ
+

∞
∑

n=0

Cnϵ
n . (A.10)

Apart from the pole terms, we will need the explicit expressions for the first two coefficients

C0 =
∑

(i,j)

Ti · Tj

16

[

γcusp
0 ln2 µ2

−sij
−

4γi
0

Ci

ln
µ2

−sij

]

−
π2

96
Γ′
0 , (A.11)

and

C1 =
∑

(i,j)

Ti · Tj

48

[

γcusp
0 ln3 µ2

−sij
−

6γi
0

Ci

ln2 µ2

−sij

]

−
π2

48
Γ0 −

ζ3
24

Γ′
0 . (A.12)
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•            for γ*, W, Z and Higgs

• NNLOsing+NLO
• N3LL+NLO resummation
• peter.hepforge.org       
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Numerical results: Higgs versus Z

LO
NLO

NNLOsing

NNLO
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Z production with PeTeR

• Moderate NNLO corrections of O(10%). Vary µ =µh=µj=µs  
and µf independently by a factor of two around µf = µ = pT .

• will use the same prescription for Higgs
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Figure 5: Scale dependence of the cross sections at NNLOsing+NLO (red), NLO (purple) and
LO (blue). [Here, we do not need to give the PDF info. Show a bit a smaller range,
only down to 0.2, and cutoff y-axis at 3.5 or so (and put legends below plots?)]

3 Numerical results

Having discussed the size of the individual corrections, we now present numerical results for
the cross section. For our predictions, we use MRST2008 PDFs [22] and their associated
values for the strong coupling constant αs. For the NNLO PDF sets, the relevant value is
αs(MZ) = 0.1171. We further set mH = 126 GeV and mt = 173 GeV.

Before proceeding to the results, we need to discuss another important point. The factor-
ization theorem (1) holds both at finite mt and in the heavy top limit mt → ∞. However, the
exact top-mass dependence has so far only been computed at leading order [23, 24]. At NLO,
one would need to compute two-loop four-point diagrams with massive top quarks, which is
quite challenging. Our NNLO results for the hard function are therefore only valid in the
heavy top limit, which is no longer adequate when the pT of the boson becomes of the order
of the top quark mass. The exact leading order result has been implemented into the code
HiggsPT [25]. In Figure 4 we show a comparison of the exact LO result with its mt → ∞
limit. The figure shows that for pT > 200 GeV, the corrections to the heavy top limit become
important. In the absence of the exact higher-order hard functions, the best way to take these
effects into account is to multiply the higher-order results by the correction factor in Figure
4. We note that the factor is largely independent of the scale. The partonic cross section has
identical scale dependence (which is just given by the overall factor αs(µ)3 at LO) so that
scale differences in the ratio only arise because the shape of the PDFs evolve when the scale is
changed and they are integrated against a different weight in the numerator and denominator.
The correction factor is also quite insensitive to the CMS energy of the collider.

For our final results, we use a conservative approach to estimate the size of missing higher-
order corrections. We found in Section 2 that there is no clear hierarchy between the jet,
soft and hard scales, at least not at lower transverse momentum pT < 200 GeV, which is the
only region of phenomenological interest. We therefore do not perform any resummation, but

8
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Resummation reduces scale uncertainty but has 
small effect on central value. No large logarithms: 
mX not dramatically lower than pT.
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 EW corrections

• Resummed simultaneously with QCD corr’ns.
• QCD and EW factorize to good accuracy
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FIG. 5. W , Z and γ production for the LHC 7 TeV. We plot the difference of cross sections with and without electroweak
corrections given by Eq. (27), with i = 1. The bands reflect the perturbative uncertainty of the results. They are obtained
by first varying each of the scales appearing in the factorization formula by a factor of 2 (as discussed in the text), and then
adding these different individual bands in quadrature.

MZ . Refs. [25, 27, 30] do not consider QCD corrections and the mixing terms Sαsαi(ν, µ) are therefore not included
in their results. Switching off the QCD terms in our result and performing a fixed-order expansion, we find agreement
with their results.

The results of this paper together with the resummation of the pure-QCD corrections, which can be performed
at N3LL accuracy, yield predictions for single electroweak boson production at large transverse momentum at an
unprecedented level of accuracy. A comprehensive study comparing with available LHC data, including N3LL accuracy
for the pure-QCD resummation, will be the subject of a future publication.
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Appendix A: Beta functions in the SM

The two-loop running of a general direct-product group can be found in Ref. [57]. Recently, the running of the
couplings in the SM up to three loops has also been computed, in Refs. [58–60]. For convenience this Appendix
collects the expressions for the SM beta functions that are used throughout the paper.

We write the beta function for the coupling αa as

β(αa) = −2αa

[

βαa

0

αa

4π
+ βαa

1

(αa

4π

)2
+ βαaαb

1

αa

4π

αb

4π
+ · · ·

]

. (A1)

Kühn Kulesza, Pozzorini, Schulze 05; TB, Garcia Tormo ’13
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• Much larger corrections for Higgs production!
• Real emissions in both cases are described by the 

same jet and soft functions.
• Large corrections in hard function Hgg→Hg !
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Figure 5: Scale dependence of the cross sections at NNLOsing+NLO (red), NLO (purple) and
LO (blue). [Here, we do not need to give the PDF info. Show a bit a smaller range,
only down to 0.2, and cutoff y-axis at 3.5 or so (and put legends below plots?)]

3 Numerical results

Having discussed the size of the individual corrections, we now present numerical results for
the cross section. For our predictions, we use MRST2008 PDFs [22] and their associated
values for the strong coupling constant αs. For the NNLO PDF sets, the relevant value is
αs(MZ) = 0.1171. We further set mH = 126 GeV and mt = 173 GeV.

Before proceeding to the results, we need to discuss another important point. The factor-
ization theorem (1) holds both at finite mt and in the heavy top limit mt → ∞. However, the
exact top-mass dependence has so far only been computed at leading order [23, 24]. At NLO,
one would need to compute two-loop four-point diagrams with massive top quarks, which is
quite challenging. Our NNLO results for the hard function are therefore only valid in the
heavy top limit, which is no longer adequate when the pT of the boson becomes of the order
of the top quark mass. The exact leading order result has been implemented into the code
HiggsPT [25]. In Figure 4 we show a comparison of the exact LO result with its mt → ∞
limit. The figure shows that for pT > 200 GeV, the corrections to the heavy top limit become
important. In the absence of the exact higher-order hard functions, the best way to take these
effects into account is to multiply the higher-order results by the correction factor in Figure
4. We note that the factor is largely independent of the scale. The partonic cross section has
identical scale dependence (which is just given by the overall factor αs(µ)3 at LO) so that
scale differences in the ratio only arise because the shape of the PDFs evolve when the scale is
changed and they are integrated against a different weight in the numerator and denominator.
The correction factor is also quite insensitive to the CMS energy of the collider.

For our final results, we use a conservative approach to estimate the size of missing higher-
order corrections. We found in Section 2 that there is no clear hierarchy between the jet,
soft and hard scales, at least not at lower transverse momentum pT < 200 GeV, which is the
only region of phenomenological interest. We therefore do not perform any resummation, but

8

(all partonic channels!)
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Hard function for total rate

• Hard function for total rate is scalar gluon form factor.

• Convergence much better for µ2=-mH2. Avoids imaginary 
parts, corresponds to expansion of space-like form factor.

• Same procedure cannot immediately be applied to H + j. 
(Imaginary parts from different channels.)
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Hard function for H + jet

• Large corrections, irrespective of arg(µ)

• Logs from different channels:    
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RG-equations

Renormalized amplitude

Scalar gg→H form factor FS

Hgg!Hg(û, t̂, µ) =
X

|Mgg!Hg(û, t̂, µ)|2

d
d lnµ

FS(ŝ, µ) =

CA �cusp(↵s) ln

�ŝ

µ2
+ 2�g

�
FS(ŝ, µ)

d
d lnµ

Mgg!Hg(û, t̂, µ) =

CA

2
�cusp(↵s)

✓
ln
�ŝ

µ2
+ ln

�t̂

µ2
+ ln

�û

µ2

◆
+ 3�g(↵s)

�
Mgg!Hg(û, t̂, µ)
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Define reduced amplitude

Then use RG-method to improve formfactor FS.
Improved cross section

with evolution US from               to              .

Simple improvement scheme

fMgg!Hg(û, t̂) =
Mgg!Hg(û, t̂, µ)q

FS(ŝ, µ)FS(t̂, µ)FS(û, µ)

If one defines a reduced amplitude as

M̃gg(û, t̂) =
Mgg(û, t̂, µ)√

FS(ŝ, µ)FS(t̂, µ)FS(û, µ)
, (7)

this amplitude will be independent of the scale µ and one can then use the RG equation (6)
to resum large corrections to each of the individual form factors in (7). However, such an
approach may be overly simplistic. The problem is that the reduced function is still a function
of two variables, so it can contain terms of the form αs ln2 t̂

ŝ
which can give rise to large

corrections. Since the amplitude Mgg(û, t̂) factorizes at small transverse momentum into the
formfactor FS(ŝ, µ) times a splitting amplitude, it is clear that the reduced amplitude (7) will
not capture all large corrections in this region. [Can we conclude anything from this
about large pT?]

Let us now discuss the numerical effects of the above prescription. We choose ŝ = 1 TeV2,
t̂ = −0.4 TeV2 and MH = 0.1 TeV. These values imply that the transverse momentum is
p2

T = t̂û/ŝ ≈ (0.5 TeV)2. For the renormalization scale, we use µ = 0.6 TeV and obtain
[check]

Hgg(û, t̂, µ) = HLO
gg (û, t̂, µ)

(
1 + 7.77234 αs + 38.2661 α2

s

)
, (8)

H̃gg(û, t̂) = H̃LO
gg (û, t̂, µ)

(
1 + 1.92209 αs + 8.29574 α2

s

)
.

We work at the same kinematic point considered in our previous paper [3], but the above
numbers include the corrections to the Wilson coefficient Ct of the effective Hgg operator
obtained after integrating out the top quark. We find that the corrections are significantly
reduced both at NLO and NNLO. This can also be seen by comparing the dashed to the solid
lines in Figure 3.

Since t̂ and û are negative, the associated form factors in (7) do not suffer from large
perturbative corrections and only the form factor FS(ŝ, µ) needs to be RG improved. One
could thus try to simply multiply the cross section by a prefactor to improve the convergence

(
dσ

dpT

)impr.

=

∣∣∣∣
FS(ŝ, µh)US(µh, µ)

FS(ŝ, µ)

∣∣∣∣
dσ

dpT

. (9)

Choosing µh = ipT gives a well behaved perturbative expansion in the numerator, and the
denominator divides out the large corrections to the standard cross section. The RG-evolution
factor, whose explicit form can be found in [17, 18], resums the large corrections.

The hard function relevant for soft-gluon resummation of the total rate is given by the
square of the scalar form factor |FS(ŝ, µ)|2. On a basic level, our ansatz thus predicts that the
rate for Higgs production with a jet suffers at large pT (in the dominant gg-channel) from the
same corrections as the square root of the total rate. A simple way to improve the predictions
is thus to divide by the square root of the total cross section, expand in αs and then multiply
by an improved value of the total cross section. Note that the cross section at low pT involves
the same hard function as the total cross section, so at low pT one should divide by the total
cross section, not its square root, to improve the perturbative behavior. Our findings, that the

6

µ2
h = �ŝ µ2 = +ŝ
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Reduced amplitude

• Reduced hard function (dashed lines) has 
better perturbative behavior. 

• However, at the end of the day, only 
moderate improvement of cross section.
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Improved cross section

• Moderate improvement: corrections larger than those to 
the form factor.

• Reduced scale unc. at NNLO.
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Heavy top approximation

• Finite-mt result only known at LO. (Approximate 
NLO: Harlander et al. ’12.)

• Small difference below pT = 200 GeV
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t$
%Σ
#"
$

Figure 4: LO result at finite mt versus the result in the mt → ∞ limit. For the plot we have
varied the scale in the range pT /2 < µ < 2pT and have computed results for both

√
s = 8 TeV

(violet) and
√

s = 13 TeV (gray). The resulting bands are very narrow and the ratio is also
to very good accuracy independent of

√
s.

size of the corrections to the hard function, as well as the cross section itself discussed below,
decrease at higher pT is consistent with this picture. On the other hand, even at pT = 200GeV,
the corrections behave more like the total rate instead of its square root. [did we try this
procedure as well?]

We can apply the same improvement also to the other partonic channels, which involve
quarks. In this case, we need to multiply the amplitudes with an appropriate combination
of vector and scalar form factors. For the qq̄ → Hg channel, for example, the relevant
combination is

M̃qq̄(û, t̂) =

√
FS(ŝ, µ)Mqq̄(û, t̂, µ)

FV (ŝ, µ)
√

FS(t̂, µ)FS(û, µ)
. (10)

The reason for the difference to (7) is that the s-channel logarithm in (4) now has a color
factor of CF − CA/2, whereas the color factor associated with the vector form factor is CF .

For this channel, the corrections are [check]

Hqq̄(û, t̂, µ) = HLO
qq̄ (û, t̂, µ)

(
1 + 3.60093αs + 14.8465α2

s

)
, (11)

H̃qq̄(û, t̂, µ) = H̃LO
qq̄ (û, t̂, µ)

(
1 + 3.32609αs + 11.6103α2

s

)
.

Their size remains practically unchanged, and the same is true also in the qg channel. This is
acceptable, given that the corrections are not very large to begin with.

7

8 TeV

13 TeV

HiggsPt,  Glosser & Schmidt ’02
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Summary and outlook
• NNLOsing / N3LL result for W, Z and Higgs production at large pT.

• Public code PeTeR

• Small NNLO corrections for W/Z, large for H. 

• Among first hadron collider physics results from 2-loop four-
point functions. Same hard function will arise in all 
resummations for single-jet observables.

• Nontrivial check on the full NNLO results once they become 
available, estimate of N3LO.

• Will do phenomenological analysis with QCD and EW, comparison 
to new W/Z measurements by ATLAS and CMS.

• New results at low pT : Two-loop collinear functions. Gehrmann, Lübbert, 

Yang ’14 Better understanding of NP effects. TB, Bell ’14
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Additional slides
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Individual scale variations

• Dominant uncertainties are from µh  and µf 

variation. → Vary those separately.
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Resummation for Z-production

Moderate effect: Difference NNLOsing vs N3LL is O(αs3) 
and logarithms are not very large.
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Figure 2: Scale uncertainty bands relative to the NLO result for Z production at the LHC
with

√
s = 8 TeV (left) and for combined W± production at the LHC with

√
s = 13 TeV

(right) for NLO and NNLOsing+NLO.

input parameters as in our previous paper [19], namely the NNLO MSTW 2008 PDF set
and its associated αs(MZ) = 0.1171 [50] with three-loop running, and MZ = 91.1876 GeV,
MW = 80.399 GeV, αe.m. = 127.916−1, sin2 θW = 0.2226, |Vud| = 0.97425, |Vus| = 0.22543,
|Vub| = 0.00354, |Vcd| = 0.22529, |Vcs| = 0.97342, |Vcb| = 0.04128. We treat all partons as
massless except for the top quark, which is integrated out from the theory. The hard function
for Z-boson production receives tiny contributions from the axial-vector coupling, see (70).
At one-loop order they are due to triangle diagrams. A similar contribution is present for the
gg channel [42, 43], which is not included so far but might be of a similar order of magnitude
as the NLO triangle contribution. For simplicity, and because the two-loop axial corrections
are not known, we set Nv

V = 0. Numerically the two-loop Nv
V terms are negligibly small.

A list of values for the integrated cross section σ(pT > 200 GeV) is shown in Table 2 for
different LHC center-of-mass energies. The table presents three different approximations i)
the fixed-order threshold cross section ii) the resummed results, and iii) the results obtained
after matching to the known NLO fixed-order result. The entries LO, NLOsing., NNLOsing.

show the perturbative expansion of the threshold cross section, which consists of the singular
distributions defined in (58). Since the LO partonic cross section is proportional to δ(m2

X)
it is purely singular. Beyond leading order, the cross section also has regular pieces not
associated with soft and collinear radiation. As the table shows, the regular pieces obtained
from the difference NLO−NLOsing are of moderate size. For example, for Z-production at√

s = 8 TeV, the singular pieces amount to about 70% of the NLO correction. The fact that
the singular pieces amount to the bulk of the cross section is true in many other cases as
well, and we therefore expect that the singular pieces will provide a good approximation to
the full NNLO correction. The column NNLOsing.+NLO shows the result obtained if both
the full NLO result and the singular pieces at NNLO are included. For the factorization and
renormalization scales, we use

µ = µr = µf =
13pT + 2MV

12
−

p2
T√
s

. (74)

This value is close to pT and was adopted as the default scale µh for the hard function after
a numerical study in [19]. The scale uncertainty is obtained by varying the scale µ by a

20
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• Numerically N3LLp and N3LL are quite close
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Correction is of the form

Plot shows that μ ≈ pT is reasonable choice.

↵(µ)
�
c2L

2 + c1L + c0

�
L = ln(µ/pT )

NLO correction 
to hard function:
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Higgs production
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