Constraining the top-Z coupling through $t\bar{t}Z$ production at the LHC

Raoul Röntsch

🛟 Fermilab

Loopfest XIII 18 June 2014 RR and Markus Schulze arXiv:hep-ph/1404.1005

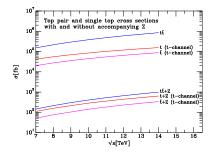
- Motivation
 - Why top physics is interesting
 - Why NLO calculation with spin-correlated decays
- Top-Z Lagrangian in effective field theory
- Details of calculation
- Constraints from current CMS data
- Constraints from future LHC run
- Conclusions and future work

- Top quark has largest mass of known quarks.
- Decays before hadronization.
- $y_t \sim 1$.
- Special role in EWSB?
- Expect top-EW couplings to be highly sensitive to EWSB mechanism.

 \Rightarrow measurement of top-EW couplings is part of the program of understanding EWSB, as well as avenue for finding/bounding New Physics effects.

Top quarks at the LHC

LHC a **top factory**: $\sigma_{t\bar{t}} \sim nb$ at $\sqrt{s} = 14$ TeV $\Rightarrow \sim 10^9$ top pairs over lifetime of LHC.



Energy and luminosity large enough to produce **massive EW** particles in association with $t\bar{t}$. \rightarrow direct measurement of

top-EW couplings

Campbell, Ellis, RR, hep-ph/1302.3856

• $t\bar{t} + \gamma$, $t\bar{t}Z$ and $t\bar{t}W$ observed in run I.

hep-ex/1307.4568, ATLAS-CONF-2012-126, hep-ex/1303.3239

• Low statistics in $t\bar{t}Z$ channel: CMS 9 events, ATLAS 1 event.

Long-term project requiring high luminosity at higher energy run.

Raoul Röntsch

No direct constraints placed on top-Z couplings to date.

Indirect constraints through LEP data:

- Zbb coupling and ρ parameter closely constrained by fits to ϵ_1 and ϵ_b .
- R_b and A_{FB}^b also constrain Zb_Lb_L couplings \rightarrow constrain Zt_Lt_L coupling (under assumption of SU(2) symmetry).
- $\bullet\,$ Translate into $\sim 1\%$ constraints on top-Z coupling.

Unlikely that LHC will be able to improve on this.

COMPLEMENT, not COMPETE.

How well can the top-Z coupling be constrained at the $\sqrt{s} = 13$ TeV LHC?

- Luminosity e.g. 30, 300, 3000 fb⁻¹
- Experimental accuracy
- Theoretical accuracy
- Cf. Baur, Juste, Orr, Rainwater:

hep-ph/0412021, hep-ph/0512262

- Trileptonic channel $t\bar{t}Z \rightarrow (jjbbl\nu l^+l^-)$ best compromise between clean signal and overall rate.
- **(a)** Shape of opening angle between leptons from Z decay $\Delta \phi_{ll}$ sensitive to top-Z couplings.
- Scale uncertainty is biggest obstacle (on theoretical side)!

Motivated by this, we perform a **partonic level** calculation to NLO in pQCD. \rightarrow decrease scale uncertainty

Work in narrow width approximation ($\sim O(1\%)$ error).

Decays of top quarks and Z-boson include spin correlations to NLO. \rightarrow realistic experimental cuts; use spin correlations as discriminating variable

In SM, top-Z coupling is

Write New Physics in EFT

$$\mathcal{L}_{t\bar{t}Z}^{\mathrm{NP}} = \sum_{i} \frac{\mathcal{C}_{i}}{\Lambda^{2}} O_{i} + \dots$$

Assuming dimension-six, gauge invariant operators, Lagrangian is

$$\mathcal{L}_{t\bar{t}Z} = ie\bar{u}(p_t) \bigg[\gamma^{\mu} \big(C_{1,V} + \gamma_5 C_{1,A} \big) + \frac{i\sigma_{\mu\nu} q_{\nu}}{M} \big(C_{2,V} + i\gamma_5 C_{2,A} \big) \bigg] v(p_{\bar{t}}) Z_{\mu}$$
Aguilar-Saavedra, hep-ph/0811.3842

$$\mathcal{L} = ie\bar{u}(p_t) \left[\gamma^{\mu} \left(C_{1,\nu} + \gamma_5 C_{1,A} \right) + \underbrace{\frac{i\sigma_{\mu\nu} q_{\nu}}{M} \left(C_{2,\nu} + i\gamma_5 C_{2,A} \right)}_{M} \right] v(p_{\bar{t}}) Z_{\mu}$$

Treat $C_{1,V}$, $C_{1,A}$, $C_{2,V}$, $C_{2,A}$ as **anomalous couplings** independent of kinematics

- Electric and magnetic top dipole moment.
- Zero at tree-level in SM.
- Small loop-induced corrections in SM.
- Non-renormalizable amplitudes.
- Dipole coefficients $C_{2,V}$ and $C_{2,A}$ set to zero.
- Focus on $C_{1,V}$ and $C_{1,A}$.
- Define

$$\Delta C_{1,V} = \frac{C_{1,V}}{C_V^{\rm SM}} - 1 \; ; \qquad \qquad \Delta C_{1,A} = \frac{C_{1,A}}{C_A^{\rm SM}} - 1. \label{eq:deltaC1}$$

- Calculation performed in TOPAZ (Melnikov, Schulze, ...).
- LO production through $gg \to t\bar{t}Z$ and $q\bar{q} \to t\bar{t}Z$.
- Real corrections open qg and $\bar{q}g$ channels.
- Soft and collinear singularities regularized using Catani-Seymour dipoles.
- Virtual corrections to gg and qq̄ channels calculated using *D*-dimensional realization of Ossola-Papadopoulos-Pittau procedure.

Ossola, Papadopoulos, Pittau, hep-ph/0609007; Ellis, Giele, Kunszt, hep-ph/0708.2398; Giele, Kunszt, Melnikov, hep-ph/0801.2237; Ellis, Giele, Kunszt, Melnikov, hep-ph/0806.3467 Review: Ellis, Kunszt, Melnikov, Zanderighi, hep-ph/1105.4319

Results at LO and NLO

• Inclusive cross-section at $\sqrt{s} = 7$ TeV LHC: $\sigma_{t\bar{t}Z}^{LO} = 103.5$ fb; $\sigma_{t\bar{t}Z}^{NLO} = 137.0$ fb

(perfect agreement with results of Garzelli, Kardos, Papadopoulos, Trocsanyi) hep-ph/1111.0610, hep-ph/1111.1444, hep-ph/1208.2665

• In trileptonic decay $t\bar{t}Z \rightarrow (jjbbl\nu l^+l^-)$ at $\sqrt{s} = 13$ LHC TeV:

$\sigma_{t\bar{t}Z}^{\rm LO} = 3.80^{+34\%}_{-25\%}$ fb;	Inclusive cuts: $p_{T,i} > 20 \text{ GeV}$
$\sigma_{t\bar{t}Z}^{\rm NLO} = 5.32^{+15\%}_{-14\%} \text{ fb}$	$p_{T,l} > 15 \text{ GeV}$
$\sigma_{t\bar{t}Z} \equiv 5.52_{-14\%}$ ID	$p_{T, miss} > 20 \text{ GeV}$ $ y_l < 2.5, y_i < 2.5$
(using $\mu_0 = mt + m_z/2$)	$R_{lj} > 0.4$

- \bullet Scale uncertainty $\pm 28\%$ at LO and $\pm 14\%$ at NLO.
- $k = \sigma^{\text{NLO}} / \sigma^{\text{LO}} \simeq 1.4.$

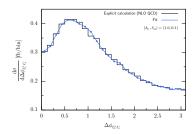
Fitting method

Compute $d\sigma_{\rm LO}(\Delta C_{1,V}, \Delta C_{1,A})$ and $d\sigma_{\rm NLO}(\Delta C_{1,V}, \Delta C_{1,A})$ at $\mu = \mu_0$. \Rightarrow large number of computations!

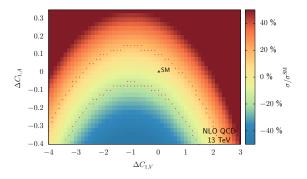
Notice that (at LO or NLO), $A_{t\bar{t}Z} = A_0 + A_V C_{1,V} + A_A C_{1,A}$. Then cross-section

$$d\sigma = s_0 + s_1 C_{1,V} + s_2 C_{1,V}^2 + s_3 C_{1,A} + s_4 C_{1,A}^2 + s_5 C_{1,V} C_{1,A}.$$

- Compute for six values of C_{1,V} and C_{1,A}.
- Solve for s_i.
- **(**) Generate all other values of $d\sigma$.
- Works on overall cross-sections and distributions.



Dependence of Cross-sections on Top-Z Couplings



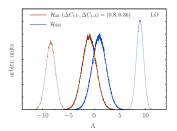
- Cross-section changes by approx. 50% in $(\Delta C_{1,V}, \Delta C_{1,A})$ plane.
- Symmetric about $\Delta C_{1,V} = -1$, expected around $\Delta C_{1,A} = -1$.
- Far greater sensitivity to $\Delta C_{1,A}$ than $\Delta C_{1,V}$.
- $\bullet\,$ Cross-sections within scale uncertainty band $\sim 15\%$ cannot be distinguished from SM:

e.g.
$$(\Delta C_{1,V}, \Delta C_{1,A}) = (1.7, -0.3)$$

• Use log-likelihood ratio test, with LL ratio derived from Poisson distribution

$$\Lambda(\vec{n}_{\rm obs}) = \sum_{i=1}^{N_{\rm bins}} \left[n_{i,{\rm obs}} \log \left(\frac{\nu_i^{H_0}}{\nu_i^{H_1}} \right) - \nu_i^{H_0} + \nu_i^{H_1} \right].$$

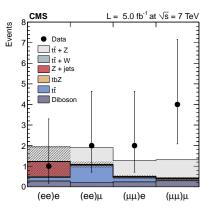
- ν_i^{H₀} and ν_i^{H₁} are calculated/measured binned data according to two hypotheses.
- *n*_{*i*,obs} are pseudoexperimental data, generated around one of the hypotheses.
- Generates two distributions for Λ overlap is a measure of statistical separation of hypotheses.
- Include theoretical uncertainty by uniformly rescaling all bins.



First observation of $t\bar{t}Z$ at the LHC:

ATLAS sees 1 event with $4.7 {\rm fb}^{-1}$, CMS sees 9 events with 4.9 ${\rm fb}^{-1}$ (bg. expectation 3.2 events).

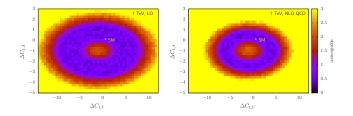
 $\begin{array}{l} \Rightarrow {\rm CMS \ finds} \\ \sigma_{t\bar{t}Z} = 0.28^{+0.14}_{-0.11} \ ({\rm stat.})^{+0.06}_{-0.03} \ ({\rm syst.}) \ {\rm pb} \\ ({\rm Good \ agreement \ w.} \\ \sigma_{\rm NLO} = 0.137 \ {\rm pb.}) \end{array}$



Use overall cross-section to put first direct constaints on top-Z coupling.

Current LHC constraints

• Use Gaussian multiplicative factor for experimental uncertainty (20%).

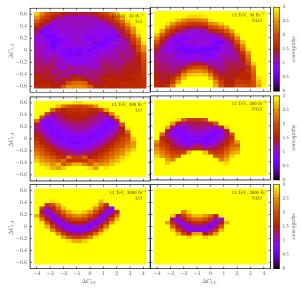


- SM at $(\Delta C_{1,V}, \Delta C_{1,A}) = (0,0)$ consistent with measurement $[C_V^{SM} \simeq 0.24$ and $C_A^{SM} \simeq -0.60]$.
- Rough guide: red excluded at 1- σ , orange at 2- σ , yellow at 3- σ .
- $-11 \lesssim \Delta C_{1,V} \lesssim 10$ and $-4 \lesssim \Delta C_{1,A} \lesssim 2$ at LO (95% C.L.).
- $-8 \lesssim \Delta C_{1,V} \lesssim 7$ and $-3 \lesssim \Delta C_{1,A} \lesssim 1$ at NLO (95% C.L.).
- Much tighter constraints at NLO (reduced scale uncertainty; k-factor).
- But constraints are very loose...

Good start - how can it be improved?

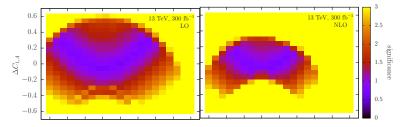
- Better statistics: larger luminosity, higher energy.
- Use shape information.

 \Rightarrow use $\Delta \phi_{\parallel}$ distribution at $\sqrt{s} = 13$ TeV for 30, 300, 3000 fb⁻¹.



- Use scale uncertainty 30% at LO and 15% at NLO.
- Obvious improvement with increased luminosity.
- Notable improvement using NLO corrections (reduced scale uncertainty + k-factor).

Focus on 300 fb^{-1} :



- Find $-4.0 < \Delta C_{1,V} < 2.8$ and $-0.36 < \Delta C_{1,A} < 0.54$ at LO.
- At NLO $-3.6 < \Delta C_{1,V} < 1.6$ and $-0.24 < \Delta C_{1,A} < 0.30$.
- \Rightarrow $C_{\rm V} = 0.24^{+0.39}_{-0.85}$ and $C_{\rm A} = -0.60^{+0.14}_{-0.18}$ at NLO QCD.

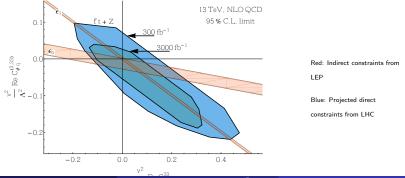
Higher dimensional operators

Higher dimensional operators in EFT \leftrightarrow deviations from SM couplings:

$$\begin{split} C_{1,V} &= C_{1,V}^{\text{SM}} + \left(\frac{v^2}{\Lambda^2}\right) \text{Re} \left[C_{\phi q}^{(3,33)} - C_{\phi q}^{(1,33)} - C_{\phi u}^{33} \right], \\ C_{1,A} &= C_{1,A}^{\text{SM}} + \left(\frac{v^2}{\Lambda^2}\right) \text{Re} \left[C_{\phi q}^{(3,33)} - C_{\phi q}^{(1,33)} + C_{\phi u}^{33} \right], \end{split}$$

Assuming SU(2) symmetry $\rightarrow C_{\phi q}^{(3,33)} \approx -C_{\phi q}^{(1,33)}$.

Translate constraints on $\Delta C_{1,V}$, $\Delta C_{1,A}$ into constraints on $C_{\phi q}^{(3,33)}$ and $C_{\phi u}^{33}$.



- $t\bar{t}Z$ production at the LHC calculated to NLO in QCD, including all decays with spin correlation, and using NWA.
- Calculation performed with different values of vector and axial-vector top-Z coupling.
- Cross-section compared to that from CMS \rightarrow first direct detection bounds on top-Z coupling (very loose).
- Log-likelihood analysis using $\Delta \phi_{\parallel}$ distribution reveals:
 - \sim factor 2 increase in sensitivity due to decrease in scale uncertainty

 - Couplings giving $\sigma \simeq \sigma_{\rm SM}$ may be distinguished by $\Delta \phi_{ll}$ shape. Constrains $C_{\rm V} = 0.24^{+0.39}_{-0.85}$ and $C_{\rm A} = -0.60^{+0.14}_{-0.18}$ at NLO QCD.
- Reduced scale at NLO and $K \simeq 1.5$ boost constraining capability
- Can be related to operators, constrain scale Λ .

Future Work

- Look at constraining coefficients dipole terms $\sim \sigma_{\mu\nu} q^{\nu}/M$.
- Look at bounds from single top + Z results
- Extend analysis to $t\bar{t} + \gamma$.

Backup Slides - Comparisons with previous results

Two previous calculations:

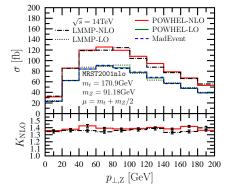
Lazopoulos, McElmurry, Melnikov, Petriello hep-ph/0804.0610

- No decays
- $\sigma_{\rm LO} =$ 0.808 pb, $\sigma_{\rm NLO} =$ 1.09 pb, at $\sqrt{s} =$ 14 TeV

Garzelli, Kardos, Papadopoulos, Trocsanyi

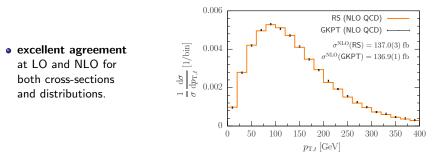
hep-ph/1111.0610, hep-ph/1111.1444, hep-ph/1208.2665

- Decays through parton showering, hadronization effects
- $\sigma_{\rm LO} = 0.808$ pb, $\sigma_{\rm NLO} = 1.12$ pb at $\sqrt{s} = 14$ TeV (same parameters)
- $\sigma_{\rm LO} = 103.5~{\rm fb},~\sigma_{\rm NLO} = 136.9~{\rm fb}$ at $\sqrt{s} = 7~{\rm TeV}$
- \sim 3% tension between results

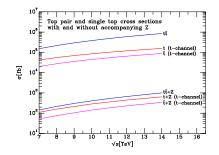


Same setup as GKPT:

$$\sigma_{
m LO}^{
m RS}=$$
 103.5fb; $\sigma_{
m NLO}^{
m RS}=$ 137.0fb



Single top + Z $(tZ + \overline{t}Z)$ similar rate to $t\overline{t}Z$



- Also sensitive to top-Z coupling
- In $tZ \rightarrow b l \nu l^+ l^-$ decay, dominant background to trileptonic $t\bar{t}Z$.
- Distinguished by number and behavior of jets.
- \Rightarrow defer study of top-Z couplings in single top+Z to later
- \rightarrow negligible background to $t\bar{t}Z$ signal.

Backup Slides – LHC constraints – Statistical Approach

Binned likelihood function with Poisson distribution P_i ,

$$\mathcal{L}(\mathcal{H}|\vec{n}) = \prod_{i=1}^{N_{\text{bins}}} P_i(n_i|\nu_i^{\mathcal{H}}),$$

with n_i events observed and ν_i predicted under hypothesis \mathcal{H} .

Log-likelihoods for predictions under $\mathcal{H}_{\rm SM}$ and $\mathcal{H}_{\rm alt}$ are

$$\log \mathcal{L}(\mathcal{H}_{\rm SM}, \mathcal{H}_{\rm alt} | \vec{n}_{\rm obs}) = \sum_{i=1}^{N_{\rm bins}} [n_{i, \rm obs} \log(\nu_i^{\rm SM, alt}) - \log(n_{i, \rm obs}!) - \nu_i^{\rm SM, alt}],$$

and log-likelihood ratio is test statistic

$$egin{aligned} \Lambda(ec{n}_{ ext{obs}}) &= \logigg(\mathcal{L}(\mathcal{H}_{ ext{SM}} | ec{n}_{ ext{obs}}) / \mathcal{L}(\mathcal{H}_{ ext{alt}} | ec{n}_{ ext{obs}})igg) \ &= \sum_{i=1}^{N_{ ext{bins}}} igg[n_{i, ext{obs}} \logigg(rac{
u_i^{ ext{SM}}}{
u_i^{ ext{alt}}}igg) -
u_i^{ ext{SM}} +
u_i^{ ext{alt}}igg], \end{aligned}$$

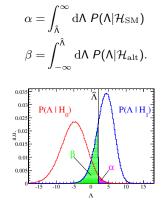
$$\Lambda(\vec{n}_{\rm obs}) = \sum_{i=1}^{N_{\rm bins}} \left[n_{i,{\rm obs}} \log \left(\frac{\nu_i^{\rm SM}}{\nu_i^{\rm alt}} \right) - \nu_i^{\rm SM} + \nu_i^{\rm alt} \right],$$

Use pseudoexperimental data for \vec{n}_{obs} .

- \bullet Generated using bin-by-bin Poisson distribution around $\vec{\nu}^{\rm SM}$
- Repeat many times \rightarrow distribution $P(\Lambda | \mathcal{H}_{SM})$.
- Now generate $P(\Lambda | \mathcal{H}_{alt})$ by using $\vec{\nu}^{alt}$ to generate \vec{n}_{obs} .
- Overlap of $P(\Lambda | \mathcal{H}_{SM})$ and $P(\Lambda | \mathcal{H}_{alt})$ gives statistical separation of hypotheses

Backup Slides – LHC Constraints – Statistical Overview

Type-I error (falsely reject ${\cal H}_{\rm alt})$ and type-II error (falsely reject ${\cal H}_{\rm SM})$ given by



De Rújula et. al,, hep-ph/1001.5300

We choose $\alpha=\beta$ – equal chance of incorrectly rejecting each hypothesis in favor of the other.

Can convert to sigma-level through

$$\sigma = \sqrt{2} \operatorname{erf}^{-1}(1 - \alpha),$$

Backup Slides – Operators in EFT

Three operators involved in top-Z coupling:

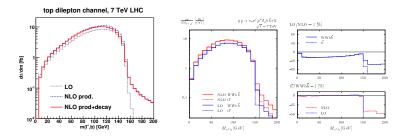
$$\mathcal{O}_{\phi q}^{(1)} = i \left(\phi^+ D_\mu \phi \right) \left(\bar{q} \gamma^\mu q \right)$$
$$\mathcal{O}_{\phi q}^{(3)} = i \left(\phi^+ \tau^I D_\mu \phi \right) \left(\bar{q} \gamma^\mu q \right)$$
$$\mathcal{O}_{\phi t} = i \left(\phi^+ D_\mu \phi \right) \left(\bar{t}_R \gamma^\mu t_R \right)$$

and

$$\delta C_L = \operatorname{Re} \left(C_{\phi q}^{(3)} - C_{\phi q}^{(1)} \right) \frac{v^2}{\Lambda^2}$$
$$\delta C_R = -\operatorname{Re} C_{\phi t} \frac{v^2}{\Lambda^2}$$

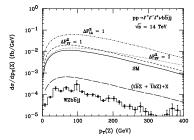
Aguilar-Saavedra, hep-ph/0811.3842; Berger, Cao, Low, hep-ph/0907.2191

- $C^{(3)}_{\phi q} + C^{(1)}_{\phi q}$ tightly constrained by $Z \to bb$ (assuming $SU(2)_L imes U(1)_Y$ symmetry).
- t
 ightarrow Wb depends on $C^{(3)}_{\phi q} C^{(1)}_{\phi q}$ and $|V_{tb}|$
- Accurate measurement of top-Z coupling in $t ar{t} Z o$ get $|V_{tb}|$

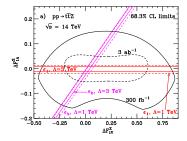


Study by Denner, Dittmaier, Kallweit, Pozzorini, Schulze, for SM NLOWG, hep-ph/1203.6803

- Shape changes when including decay
- No difference using NWA vs. full calculation for $m_{lb} \lesssim 2m_t$.
- Shape changes $m_{lb} \simeq 2m_t$.



hep-ph/0412021



hep-ph/0412021