Multi-loop unitarity via computational algebraic geometry

Loopfest XIII, NYC, 2014

Yang Zhang

Niels Bohr Institute

Based on

(algebraic geometry methods)
(3-loop 4-point)
(global structure)
(2-loop 5-point QCD)
(maximal cut)
arXiv: I 202.2019, Simon Badger, Hjalte Frellesvig and YZ
arXiv: $1205.5707, Y Z$
arXiv: | 207.2976, Simon Badger, Hjalte Frellesvig and YZ
arXiv:| 302. I023, Rijun Huang and YZ
arXiv: I 310.105 I, Simon Badger, Hjalte Frellesvig and YZ
arXiv:| 310.6006, Mads Sogaard and $Y Z$

Outline

Algebraic geometry

Gröbner Basis
Primary Decomposition Affine Variety Structure Multivariate residue

- Integrand reduction at one loop, review
- Integrand reduction at n loop by algebraic geometry
- Examples: 2-loop 5-gluon planar QCD, 3-loop 4-point triplebox ...

Unitarity at one-loop

$$
D=4
$$

Unitarity:

Determine ' c ' coefficients from on-shell cut solutions and tree amplitudes
quadruple cut $\rightarrow c_{\text {box }}$
triple cut $\rightarrow c_{\text {tri }}$
double cut $\rightarrow c_{\text {bub }}$

Integrand reduction: box

Integrand-level reduction, Ossola, Papadopoulos and Pittau (OPP), 2006
Giele, Kunszt, Melnikov, 2008

$$
\begin{aligned}
& A^{(1)}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{N(k)}{D_{1} D_{2} D_{3} D_{4}} \longrightarrow N(k)=\Delta_{1234}(k)+\sum_{i_{1}<i_{2}<i_{3}} \Delta_{i_{1} i_{2} i_{3}}(k) \prod_{i \neq i_{1}, i_{2}, i_{3}} D_{i}+\sum_{i_{1}<i_{2}} \Delta_{i_{1} i_{2}}(k) \prod_{i \neq i_{1}, i_{2}} D_{i} \\
& \Delta_{1234}(k) \text { is a polynomial in scalar products (SP). } \quad \mathbb{S P}=\left\{k \cdot P_{1}, k \cdot P_{2}, k \cdot P_{3}, k \cdot \omega\right\} \\
& \omega \text { is auxiliary, }\left(\omega \cdot P_{i}\right)=0, i=1,2,3,4 \\
& 2\left(k \cdot P_{1}\right)=D_{4}-D_{1}-P_{1}^{2} \\
& 2\left(k \cdot P_{2}\right)=D_{1}-D_{2}+P_{2}^{2} \\
& 2\left(k \cdot P_{3}\right)=D_{2}-D_{3}+2 P_{2} \cdot P_{3}+P_{3}^{2} \\
& \text { reducible irreducible } \\
& \text { scalar product scalar product } \\
& \text { (RSP) } \\
& \text { (ISP) }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{1234}(k)=\sum_{i} c_{i}(k \cdot \omega)^{i} \quad \Delta_{1234}(k) \text { is a polynomial in ISP only. } \\
& \quad \text { integrand basis } \Delta_{1234}(k)=c_{0}+c_{1}(k \cdot \omega)
\end{aligned}
$$

One loop, other diagrams

Dimension	Diagram	\# SP (ISP+RSP)	\#terms in integrand basis (non-spurious + spurious)	\# Solutions (dimension)
4	\square	$4(1+3)$	$2(\mathrm{I}+\mathrm{I})$	$2(0)$
4	$4(2+2)$	$7(\mathrm{I}+6)$	$\mathrm{I}(\mathrm{I})$	
4	-	$4(3+\mathrm{I})$	$9(\mathrm{I}+8)$	$\mathrm{I}(2)$
$4-2 \varepsilon$	\square	$5(2+3)$	$5(3+2)$	$\mathrm{I}(\mathrm{I})$

-straightforward to obtain integrand basis, unitarity cut solutions
-all one-loop master integrals are known
-c coefficients can be automatically computed by public codes

- 'NGluon', Badger, Biedermann, and Uwer
- 'CutTools’, Ossola, Papadopoulos, and Pittau
- 'GoSam', Cullen, Greiner, Heinrich, Luisoni, and Mastrolia

Generalization to
 higher loops?

Example: 4D massless two-loop hepta cut

P. Mastrolia, G. Ossola, 201I
S. Badger, H. Frellesvig, YZ, 2012

Naive guessing: all renormalizable monomials which do NOT contain $(k \cdot \omega)^{2}$, $(q \cdot \omega)^{2}$ or $(k \cdot \omega)(q \cdot \omega)$.

$$
\begin{gathered}
\Delta_{\mathrm{dbox}}=\left(k \cdot P_{4}\right)^{m}\left(q \cdot P_{1}\right)^{n}(k \cdot \omega)^{\alpha}(q \cdot \omega)^{\beta} \\
m+\alpha \leq 4, n+\beta \leq 4, m+n+\alpha+\beta \leq 6 \\
(\alpha, \beta)=(0,0),(1,0),(0,1)
\end{gathered}
$$

Example: 4D massless two-loop hepta cut

S. Badger, H. Frellesvig, YZ, 20I2

3 cut-equations for ISP's, and their combinations

$$
\begin{aligned}
(k \cdot \omega)^{2} & =\left(k \cdot P_{4}-t / 2\right)^{2} \\
(q \cdot \omega)^{2} & =\left(q \cdot P_{1}-t / 2\right)^{2} \\
(k \cdot \omega)(q \cdot \omega) & =-\frac{t^{2}}{4}+\frac{t\left(k \cdot P_{4}\right)}{2}+\frac{t\left(q \cdot P_{1}\right)}{2}+\left(1+\frac{2 t}{s}\right)\left(k \cdot P_{4}\right)\left(q \cdot P_{1}\right)
\end{aligned}
$$

$$
(1) \times(2)-(3)^{2}
$$

$$
4\left(k \cdot P_{4}\right)^{2}\left(q \cdot P_{1}\right)^{2}=-2 s\left(k \cdot P_{4}\right)^{2}\left(q \cdot P_{1}\right)-2 s\left(k \cdot P_{4}\right)\left(q \cdot P_{1}\right)^{2}-s t\left(k \cdot P_{4}\right)\left(q \cdot P_{1}\right)
$$

We have to "exhaust" all combinations...
Finally, we determine that the basis contains 32 terms

6 families of hepta-cut solutions, Laurant series contains 38 terms
Solving 38 linear equations for 32 coefficients, done!

Gröbner basis and integrand basis

arXiv:I205.5707, YZ arXiv:I205.7087, Mastrolia, Mirabella, Ossola and Peraro

$$
I=\left\langle D_{1}, \ldots D_{k}\right\rangle=\left\{\sum_{i=1}^{k} g_{i} D_{i} \mid \quad \forall g_{i} \in R\right\}
$$

Synthetic polynomial division

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{N}{D_{1} D_{2} \ldots D_{7}}, \quad N=Q+\Delta_{\mathrm{dbox}}, \quad Q \in I
$$

N divided by $\left\{D_{1}, \ldots D_{k}\right\}$:
Define a monomial order, and recursively preform $N / D_{1}, \ldots, N / D_{k}$. Finally, Euclidean division the division process will stop and we have

$$
N=f_{1} D_{1}+\ldots f_{k} D_{k}+r^{\prime}
$$

where r^{\prime} is the remainder. $\Delta_{\text {dbox }}=r^{\prime}$???
In most cases, it does not work since it stops too early, unless we are using Gröbner basis.

Gröbner basis

- r is uniquely determined.

$$
\left(\begin{array}{ll}
y^{3} & x-2 y^{2}
\end{array}\right)=\left(\begin{array}{ll}
x^{3}-2 x y & x^{2} y-2 y^{2}+x
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{4}-\frac{1}{4} x y-\frac{1}{2} y^{3} & y^{2} \\
\frac{1}{4} x^{2}-\frac{1}{2} y+\frac{1}{2} x y^{2} & 1-x y
\end{array}\right)
$$

- If $N \in I, r=0$.

$$
\Delta_{\mathrm{dbox}}=r
$$

Toy Model: $N=x y^{3}, I=\left\langle x^{3}-2 x y, x^{2} y-2 y^{2}+x\right\rangle$. Direct synthetic division of N towards $\left\{x^{3}-2 x y, x^{2} y-2 y^{2}+x\right\}$ gives $r^{\prime}=x y^{3}$.

But the Gröbner basis is $I=\left\langle y^{3}, x-2 y^{2}\right\rangle$, and the synthetic division of N on Gröbner basis gives $r=0$. So $N \in I$.

Grobner basis: dbox example

arXiv:I205.5707, YZ

$$
\begin{gathered}
4 \text { ISP's } \quad \mathbb{I S P}=\left\{k \cdot P_{4}, k \cdot \omega, q \cdot P_{1}, q \cdot \omega\right\} \\
N=q_{1} g_{1}+\ldots q_{k} g_{k}+\Delta_{\mathrm{dbox}} \\
\mathrm{~N} \text { contains } 160 \text { terms where } \Delta_{\mathrm{dbox}} \text { contains } 32 \text { terms. }
\end{gathered}
$$

In principle, it works for arbitrary number of loops, any dimension. Automated by the package:'BasisDet'
http://www.nbi.dk/~zhang/BasisDet.html, YZ 2012

| Dimension
 propagators,
 kinematics |
| :---: |\quad| Integrand |
| :---: |
| basis |\quad| Can also find ISP |
| :---: |
| automatically! |

Primary decomposition

Find the number of branches of unitarity solutions
$I=\left\langle x^{2}-y^{2}, x^{3}+y^{3}-z^{2}\right\rangle$. How many (irreducible) curves are there in $\mathcal{Z}(I)$. Primary decomposition:

-AG software 'Macaulay 2'

- Numeric algebraic geometry methods

$$
I=I_{1} \bigcap I_{2} \quad I_{1}=\left\langle x+y, z^{2}\right\rangle, \quad I_{2}=\left\langle x-y, 2 y^{3}-z^{2}\right\rangle
$$

High genus examples: arXiv:I302.1203, Rijun and YZ

More examples

Dimension	Diagram	\# SP (ISP+RSP)	\#terms in integrand basis (non-spurious + spurious)	\# Solutions (dimension)	Nontrivial dimension Non-planar Rijun Huang
4		$8(4+4)$	$32(16+16)$	6 (1)	
4	,	$8(5+3)$	$69(18+51)$	4 (2)	
4	\square	$4(3+1)$	$42(12+30)$	I (5)	
4	-	$8(3+5)$	$20(10+10)$	2 (2)	
4		$8(4+4)$	$38(19+19)$	8 (1)	
$4-2 \varepsilon$		I I (7+4)	$160(84+76)$	I(4)	
4		$12(7+5)$	398 (199+199)	14 (2)	
Three-loop!			Even more examples: arXiv:I209.3747 Bo Fen		

D-dim integrand reduction

2-loop 5-point QCD
arXiv: I3I0.I05I: Simon Badger, Hjalte Frellesvig and YZ

$$
\begin{aligned}
& \mu_{11}=k_{[-2 \epsilon], 1}^{2}, \mu_{22}=k_{[-2 \epsilon], 2}^{2} \text { and } \mu_{12}=2\left(k_{[-2 \epsilon], 1} \cdot k_{[-2 \epsilon], 2}\right) \\
& \mu_{33}=\mu_{11}+\mu_{22}+\mu_{12}
\end{aligned}
$$

$$
\begin{gathered}
\Delta_{431}\left(1^{+}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=\frac{i s_{12} s_{23} s_{45} F_{1}\left(D_{s}, \mu_{11}, \mu_{22}, \mu_{12}\right)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle}\left(\operatorname{tr}_{+}(1345)\left(k_{1}+p_{5}\right)^{2}+s_{15} s_{34} s_{45}\right) \\
F_{1}\left(D_{s}, \mu_{11}, \mu_{22}, \mu_{12}\right)=\left(D_{s}-2\right)\left(\mu_{11} \mu_{22}+\mu_{11} \mu_{33}+\mu_{22} \mu_{33}\right)+4\left(\mu_{12}^{2}-4 \mu_{11} \mu_{22}\right)
\end{gathered}
$$

-Feynman rules + cut solution
-6D spinor helicity formalism

Momentum-twistor parametrization

$$
(\lambda, \tilde{\lambda}) \longrightarrow(\lambda, \mu) \quad \text { (Andrew Hodges) }
$$

2-loop 5-gluon amplitude

arXiv: 1310.1051

first result on 2-loop 5-gluon helicity amplitude in QCD
subtraction

$$
-\frac{1}{\left(k_{1}+k_{2}\right)^{2}} \Delta_{431}
$$

Integrand reduction

all coefficients are analytically found
IR structure: consistent with Catani's factorization

2-loop 5-gluon amplitude

arXiv: 1310.105 I
$=F_{1}\left(D_{s}, \mu_{11}, \mu_{22}, \mu_{12}\right) \times($ helicity factor $) \times(\mathcal{N}=4$ Integrand $)$

$$
\Delta_{330 ; 5 L}\left(1^{+}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=-\frac{i}{\langle 12\rangle\langle 12\rangle\langle 12\rangle\langle 12\rangle\langle 12\rangle} \times
$$

No corresponding $\mathcal{N}=4$ diagrams
similar for non-planar diagrams, under progress

Momentum-twistor parametrization

Analytic computation

Andrew Hodges
Spinor helicity formalism ($\lambda, \tilde{\lambda})$ \qquad Momentum-twistor parametrization (λ, μ)
-momentum conservation

- Schouten identity
all constraints resolved
- Fierz identity
-...

$$
\tilde{\lambda}_{i}=\frac{\langle i, i+1\rangle \mu_{i-1}+\langle i+1, i-1\rangle \mu_{i}+\langle i-1, i\rangle \mu_{i+1}}{\langle i, i+1\rangle\langle i-1, i\rangle}
$$

5-point $\quad\left(\begin{array}{ccccc}\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} & \lambda_{5} \\ \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \mu_{5}\end{array}\right)=\left(\begin{array}{ccccc}1 & 0 & \frac{1}{x_{1}} & \frac{1}{x_{1}}+\frac{1}{x_{2}} & \frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & x_{4} & 1 \\ 0 & 0 & 1 & 1 & \frac{x_{5}}{x_{4}}\end{array}\right)$

In the final result, it is easy to convert $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ to $s_{i j}, \operatorname{tr}_{5} \ldots$
n-point, under progress

Conclusion

- Algebraic geometry approach to high-loop amplitudes
- Gröbner Basis \rightarrow Integrand basis
- Primary decomposition \rightarrow Global unitarity cut structure
- Multivariate residues \rightarrow maximal unitarity

Outlook

- Global residues via algebraic geometry

> works by K. Larsen, D. Kosower, M. Sogaard, YZ

- Integration-by-parts identities from the viewpoint of differential geometry

YZ |406.xxxx, to appear

