RECENT PROGRESS IN HELAC FOR NLO AND NNLO CALCULATIONS

Costas G. Papadopoulos

INPP, NCSR "Demokritos", Athens

NY City College of Technology, Brooklyn, NY, 2014

From Feynman Diagrams to recursive equations: taming the n!

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles
- For QCD colour connection representation: revival of the 't Hooft ideas ('71) in the modern era.

Dyson-Schwinger Recursive Equations

From Feynman Diagrams to recursive equations: taming the n!

• 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles

A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306 [arXiv:hep-ph/0002082].

F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.

F. Caravaglios and M. Moretti, Phys. Lett. B 358 (1995) 332.

Unfortunately not so much on the second line !

From Feynman Diagrams to recursive equations: taming the n!

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles
- For QCD colour connection representation: revival of the 't Hooft ideas ('71) in the modern era.

-• Colour flow or colour connection representation

$$\mathcal{M}_{j_2,\ldots,j_k}^{a_1,i_2,\ldots,i_k}t_{i_1j_1}^{a_1} \to \mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k}$$

$$\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} = \sum_{\sigma} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \ldots \delta_{i_{\sigma_k},j_k} \mathcal{A}_{\sigma} \to \mathbf{n}!$$

gluons ightarrow (i,j), quark ightarrow (i,0), anti-quark ightarrow (0,j), other ightarrow (0,0)

$$\sum_{\sigma,\sigma'} A_{\sigma}^* C_{\sigma,\sigma'} A_{\sigma'}$$
$$C_{\sigma,\sigma'} \equiv \sum_{\{i\},\{j\}} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \dots \delta_{i_{\sigma_k},j_k} \delta_{i_{\sigma'_1},j_1} \delta_{i_{\sigma'_2},j_2} \dots \delta_{i_{\sigma'_k},j_k} = N_c^{m(\sigma,\sigma')}$$

• Colour configuration representation (Monte Carlo integration)

$$\sum_{\{i\},\{j\}} |\mathcal{M}_{j_1,j_2,...,j_k}^{i_1,i_2,...,i_k}|^2 \to \beta^n$$

Partial solution n < 6 - 7

$$\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} = \sum A_{\sigma}$$

What do we need for an NLO calculation ?

$$p_1, p_2 \to p_3, ..., p_{m+2}$$

$$\sigma_{NLO} = \int_{m} d\Phi_{m} |M_{m}^{(0)}|^{2} J_{m}(\Phi) + \int_{m} d\Phi_{m} 2Re(M_{m}^{(0)*}M_{m}^{(1)}(\epsilon_{UV}, \epsilon_{IR})) J_{m}(\Phi) + \int_{m+1} d\Phi_{m+1} |M_{m+1}^{(0)}|^{2} J_{m+1}(\Phi)$$

 $J_m(\Phi)$ jet function: Infrared safeness $J_{m+1} \rightarrow J_m$

→ ∃ >

What do we need for an NLO calculation ?

$$p_1, p_2 \to p_3, ..., p_{m+2}$$

$$\sigma_{NLO} = \int_{m} d\Phi_{m}^{D=4} (|M_{m}^{(0)}|^{2} + 2Re(M_{m}^{(0)*}M_{m}^{(CT)}(\epsilon_{UV}))) J_{m}(\Phi) + \int_{m} d\Phi_{m}^{D=4} 2Re(M_{m}^{(0)*}M_{m}^{(1)}(\epsilon_{UV},\epsilon_{IR})) J_{m}(\Phi) + \int_{m+1} d\Phi_{m+1}^{D=4-2\epsilon_{IR}} |M_{m+1}^{(0)}|^{2} J_{m+1}(\Phi)$$

IR and UV divergencies, Four-Dimensional-Helicity scheme; scale dependence μ_R QCD factorization- μ_F Collinear counter-terms when PDF are involved

Problems arising in NLO calculations

- Large Number of Feynman diagrams
- Reduction to Scalar Integrals (or sets of known integrals)
- Numerical Instabilities (inverse Gram determinants, spurious phase-space singularities)
- Extraction of soft and collinear singularities (we need virtual and real corrections)

Get numerical predictions numerically !

Any *m*-point one-loop amplitude can be written as

$$\int d^D q A(\bar{q}) = \int d^D q \, \frac{\bar{N}(\bar{q})}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

A bar denotes objects living in $n = 4 + \epsilon$ dimensions

$$ar{D}_i = (ar{q}+p_i)^2 - m_i^2$$
 $ar{q}^2 = q^2 + ar{q}^2$
 $ar{D}_i = D_i + ar{q}^2$

Image: Image:

basis of scalar integrals:

G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.

Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425 (1994) 217 [arXiv:hep-ph/9403226].

$$\mathcal{A} = \sum d_{i_1 i_2 i_3 i_4} + \sum c_{i_1 i_2 i_3} + \sum b_{i_1 i_2} + \sum b_{i_1 i_2} + \sum a_{i_1} + R$$

a, b, c, d
ightarrow cut-constructible part R
ightarrow rational terms

$$\mathcal{A} = \sum_{I \subset \{0,1,\cdots,m-1\}} \int \frac{\mu^{(4-d)d^{d}q}}{(2\pi)^{d}} \frac{\bar{N}_{I}(\bar{q})}{\prod_{i \in I} \bar{D}_{i}(\bar{q})}$$

< Ξ →

Image: Image:

THE OLD "MASTER" FORMULA

$$\int A = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) C_0(i_0 i_1 i_2)$$

$$+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) B_0(i_0 i_1)$$

$$+ \sum_{i_0}^{m-1} a(i_0) A_0(i_0)$$

$$+ \text{ rational terms}$$

 D_0, C_0, B_0, A_0 , scalar one-loop integrals: 't Hooft and Veltman QCDLOOP Ellis & Zanderighi ; OneLOop A. van Hameren

Costas G. Papadopoulos (Athens)

Loopfest xiii 8 / 42

THE OLD "MASTER" FORMULA

$$\int \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) \int \frac{1}{\bar{D}_{i0} \bar{D}_{i1} \bar{D}_{i2} \bar{D}_{i2}} \\ + \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) \int \frac{1}{\bar{D}_{i0} \bar{D}_{i1} \bar{D}_{i2}} \\ + \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) \int \frac{1}{\bar{D}_{i0} \bar{D}_{i1}} \\ + \sum_{i_0 < i_1}^{m-1} a(i_0) \int \frac{1}{\bar{D}_{i0}} d(i_0 i_0) \int \frac{1}{\bar{D}_{i0}} d(i_0 i_0) d(i_0) d(i_$$

+ rational terms

Remove the integration !

< ∃ >

$$\begin{aligned} \frac{N(q)}{\bar{D}_0\bar{D}_1\cdots\bar{D}_{m-1}} &= \sum_{i_0$$

-

2

OPP "MASTER" FORMULA

Equation in a from "solvable" à la "unitarity"

General expression for the 4-dim N(q) at the integrand level in terms of D_i

$$\begin{split} \mathsf{V}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

I

A NEXT TO SIMPLE EXAMPLE

• Not only tensor integrals need reduction!

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$
$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^+)} + \prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^-)} \right)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^+)} + \prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^-)} \right)$$

- ₹ ∃ ►

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^+)} + \prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^-)} \right)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^+)} + \prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^-)} \right)$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}}$$

$$1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} \dots D_{i_{m-1}}$$

$$\int \frac{1}{D_0 D_1 D_2 D_3 \dots D_{m-1}} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^+)} + \prod_{j \neq i_0, i_1, i_2, i_3} \frac{1}{D_j(q^-)} \right)$$

э

RATIONAL TERMS

Numerically treat $D = 4 - 2\epsilon$, means $4 \oplus 1$

Expand in D-dimensions ?

$$ar{D}_i = D_i + \widetilde{q}^2$$

$$N(q) = \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \left[d(i_{0}i_{1}i_{2}i_{3};\tilde{q}^{2}) + \tilde{d}(q;i_{0}i_{1}i_{2}i_{3};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} \bar{D}_{i}$$

$$+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \left[c(i_{0}i_{1}i_{2};\tilde{q}^{2}) + \tilde{c}(q;i_{0}i_{1}i_{2};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} \bar{D}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[b(i_{0}i_{1};\tilde{q}^{2}) + \tilde{b}(q;i_{0}i_{1};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[a(i_{0};\tilde{q}^{2}) + \tilde{a}(q;i_{0};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[a(i_{0};\tilde{q}^{2}) + \tilde{a}(q;i_{0};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[a(i_{0};\tilde{q}^{2}) + \tilde{a}(q;i_{0};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[a(i_{0};\tilde{q}^{2}) + \tilde{a}(q;i_{0};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[a(i_{0};\tilde{q}^{2}) + \tilde{a}(q;i_{0};\tilde{q}^{2}) \right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i}$$

Costas G.

RATIONAL TERMS

Numerically treat $D = 4 - 2\epsilon$, means $4 \oplus 1$

Expand in D-dimensions ?

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3; \tilde{q}^2) + \tilde{d}(q; i_0 i_1 i_2 i_3; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2; \tilde{q}^2) + \tilde{c}(q; i_0 i_1 i_2; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1; \tilde{q}^2) + \tilde{b}(q; i_0 i_1; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1}^{m-1} \bar{D}_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0; \tilde{q}^2) + \tilde{a}(q; i_0; \tilde{q}^2) \right] \prod_{i \neq i_0}^{m-1} \bar{D}_i + \tilde{P}(q) \prod_i^{m-1} \bar{D}_i \end{split}$$

Image: A matrix

RATIONAL TERMS

Numerically treat $D = 4 - 2\epsilon$, means $4 \oplus 1$

Expand in D-dimensions ?

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3; \tilde{q}^2) + \tilde{d}(q; i_0 i_1 i_2 i_3; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2; \tilde{q}^2) + \tilde{c}(q; i_0 i_1 i_2; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1; \tilde{q}^2) + \tilde{b}(q; i_0 i_1; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1}^{m-1} \bar{D}_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0; \tilde{q}^2) + \tilde{a}(q; i_0; \tilde{q}^2) \right] \prod_{i \neq i_0}^{m-1} \bar{D}_i + \tilde{P}(q) \prod_i^{m-1} \bar{D}_i \end{split}$$

$$m_i^2
ightarrow m_i^2 - ilde q^2$$

- < A

In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of \tilde{q}^2 , in order to determine $b^{(2)}(ij)$, $c^{(2)}(ijk)$ and $d^{(2m-4)}$.

$$\begin{aligned} \mathbf{R}_{1} &= -\frac{i}{96\pi^{2}}d^{(2m-4)} - \frac{i}{32\pi^{2}}\sum_{i_{0} < i_{1} < i_{2}}^{m-1}c^{(2)}(i_{0}i_{1}i_{2}) \\ &- \frac{i}{32\pi^{2}}\sum_{i_{0} < i_{1}}^{m-1}b^{(2)}(i_{0}i_{1})\left(m_{i_{0}}^{2} + m_{i_{1}}^{2} - \frac{(p_{i_{0}} - p_{i_{1}})^{2}}{3}\right) \end{aligned}$$

G. Ossola, C. G. Papadopoulos and R. Pittau,arXiv:0802.1876 [hep-ph]

A different source of Rational Terms, called R_2 , can also be generated from the ϵ -dimensional part of N(q)

$$\begin{split} \bar{N}(\bar{q}) &= N(q) + \tilde{N}(\tilde{q}^2,\epsilon;q) \\ \mathrm{R}_2 &\equiv \frac{1}{(2\pi)^4} \int d^n \, \bar{q} \frac{\tilde{N}(\tilde{q}^2,\epsilon;q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \equiv \frac{1}{(2\pi)^4} \int d^n \, \bar{q} \, \mathcal{R}_2 \\ &\bar{q} &= q + \tilde{q} \, , \\ &\bar{\eta}_{\bar{\mu}} &= \gamma_{\mu} + \tilde{\gamma}_{\bar{\mu}} \, , \\ &\bar{g}^{\bar{\mu}\bar{\nu}} &= g^{\mu\nu} + \tilde{g}^{\bar{\mu}\bar{\nu}} \, . \end{split}$$

New vertices/particles or GKMZ-approach

HELAC R2 TERMS

Contribution from d-dimensional parts in numerators:

$$\begin{array}{c} \mu_{1,a_{1}} & & & \\ \mu_{2,a_{2}} & = -\frac{ig^{4}N_{col}}{96\pi^{2}} \sum_{P(234)} \left\{ \left[\frac{\delta_{a_{1}a_{2}}\delta_{a_{3}a_{4}} + \delta_{a_{1}a_{3}}\delta_{a_{4}a_{2}} + \delta_{a_{1}a_{4}}\delta_{a_{2}a_{3}}}{N_{col}} \right. \\ & & + 4\,Tr(t^{a_{1}}t^{a_{3}}t^{a_{2}}t^{a_{4}} + t^{a_{1}}t^{a_{4}}t^{a_{2}}t^{a_{3}})\,(3 + \lambda_{HV}) \\ & & -Tr(\{t^{a_{1}}t^{a_{2}}\}\{t^{a_{3}}t^{a_{4}}\})\,(5 + 2\lambda_{HV})\right]g_{\mu_{1}\mu_{2}}g_{\mu_{3}\mu_{4}} \\ & & + 12\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{1}\mu_{3}}g_{\mu_{2}\mu_{4}} - g_{\mu_{2}\mu_{3}}g_{\mu_{1}\mu_{4}}\right)\right\} \\ & & = -\frac{N_{f}}{N_{col}}\left[\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{1}\mu_{3}}g_{\mu_{2}\mu_{4}} - g_{\mu_{2}\mu_{3}}g_{\mu_{1}\mu_{4}}\right)\right] \\ & & = -\frac{N_{f}}{N_{col}} \left[\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{1}\mu_{3}}g_{\mu_{2}\mu_{4}} - g_{\mu_{2}\mu_{3}}g_{\mu_{1}\mu_{4}}\right)\right] \\ & & = -\frac{N_{f}}{N_{col}} \left[\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{1}\mu_{3}}g_{\mu_{2}\mu_{4}} - g_{\mu_{2}\mu_{3}}g_{\mu_{1}\mu_{4}}\right)\right] \\ & & = -\frac{N_{f}}{N_{col}} \left[\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{1}\mu_{3}}g_{\mu_{2}\mu_{4}} - g_{\mu_{2}\mu_{3}}g_{\mu_{3}}\right) \right] \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{1}\mu_{3}}g_{\mu_{2}\mu_{4}} - g_{\mu_{3}\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{1}\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{2}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{1}}t^{a_{3}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{3}}t^{a_{3}}t^{a_{4}})\left(\frac{5}{3}g_{\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{3}}t^{a_{3}})\left(\frac{5}{3}g_{\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{3}}t^{a_{3}}t^{a_{3}})\left(\frac{5}{3}g_{\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{3}}t^{a_{3}})\left(\frac{5}{3}g_{\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{3}}t^{a_{3}})\left(\frac{5}{3}g_{\mu_{3}}g_{\mu_{3}}g_{\mu_{3}}\right) \\ & & = -\frac{N_{f}}{N_{col}}Tr(t^{a_{3$$

Costas G. Papadopoulos (Athens)

The one-loop calculation in a nutshell

The computation of $pp(p\bar{p}) \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$ involves up to six-point functions. The most generic integrand has therefore the form

In order to apply the OPP reduction, HELAC evaluates numerically the numerators $N_i^6(q), N_i^5(q), \ldots$ with the values of the loop momentum q provided by CutTools

- generates all inequivalent partitions of 6,5,4,3... blobs attached to the loop, and check all possible flavours (and colours) that can be consistently running inside
- hard-cuts the loop (q is fixed) to get a n + 2 tree-like process

The R_2 contributions (rational terms) are calculated in the same way as the tree-order amplitude, taking into account *extra vertices*

Costas G. Papadopoulos (Athens)

COLOR TREATMENT

HELAC is using color-connection representation of amplitudes + color-flow Feynman rules (Kanaki & Papadopoulos) - valid also at one loop

HELAC

REAL CORRECTIONS

Real corrections: $D \rightarrow 4$ dimensions (Catani & Seymour)

$$\int_{m+1} d\sigma^R + \int_m d\sigma^V$$
$$\sigma^{NLO} = \int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right] + \int_m \left[d\sigma^V + \int_1 d\sigma^A \right]_{\epsilon=0}$$

$$d\phi(p_i, p_j, p_k; Q) = \frac{d^d p_i}{(2\pi)^{d-1}} \delta_+(p_i^2) \frac{d^d p_j}{(2\pi)^{d-1}} \delta_+(p_j^2) \frac{d^d p_k}{(2\pi)^{d-1}} \delta_+(p_k^2) (2\pi)^d \delta^{(d)}(Q - p_i - p_j - p_k) \delta^{(d)}(Q - p_i - p_k) \delta^{(d)}(Q - p_k) \delta^{(d)}$$

$$d\phi(p_i, p_j, p_k; Q) = d\phi(\tilde{p}_{ij}, \tilde{p}_k; Q) \ [dp_i(\tilde{p}_{ij}, \tilde{p}_k)]$$

Costas G. Papadopoulos (Athens)

REAL CORRECTIONS

Dipoles in real life

- (A 🖓

REAL CORRECTIONS

Dipoles in real life: the formulae

$$\begin{split} d\sigma^{A} &= \mathcal{N}_{in} \sum_{\{m+1\}} d\phi_{m+1}(p_{1},...,p_{m+1};Q) \; \frac{1}{S_{\{m+1\}}} \\ &\cdot \sum_{\substack{p \in I_{ij} \\ ij \in K}} \sum_{k \neq i,j} \mathcal{D}_{ij,k}(p_{1},...,p_{m+1}) \; F_{J}^{(m)}(p_{1},..\tilde{p}_{ij},\tilde{p}_{k},...,p_{m+1}) \\ \mathcal{D}_{ij,k} \; (p_{1},...,p_{m+1}) = -\frac{1}{2p_{i} \cdot p_{j}} \\ &\cdot \quad _{m} < 1,..,\tilde{ij},...\tilde{k},..,m+1 | \frac{T_{k} \cdot T_{ij}}{T_{ij}^{2}} \; V_{ij,k} \; |1,..,\tilde{ij},...,\tilde{k},..,m+1 >_{m} \end{split}$$

$$\begin{aligned} d\sigma^R - d\sigma^A &= \mathcal{N}_{in} \sum_{\{m+1\}} d\phi_{m+1}(p_1, ..., p_{m+1}; Q) \; \frac{1}{S_{\{m+1\}}} \\ &\cdot & \left\{ |\mathcal{M}_{m+1}(p_1, ..., p_{m+1})|^2 \; F_J^{(m+1)}(p_1, ..., p_{m+1}) \right. \\ &- \sum_{\substack{\text{pairs} \\ i,j}} \sum_{k \neq i,j} \mathcal{D}_{ij,k}(p_1, ..., p_{m+1}) \; F_J^{(m)}(p_1, ... \tilde{p}_{ij}, \tilde{p}_k, ..., p_{m+1}) \end{aligned}$$

$$\begin{split} &\int_{m+1} d\sigma^A = -\int_m \mathcal{N}_{in} \sum_{\{m\}} d\phi_m(p_1, ..., p_m; Q) \; \frac{1}{S_{\{m\}}} \; F_j^{(m)}(p_1, ..., p_m) \\ &\cdot \sum_i \sum_{k \neq i} |\mathcal{M}_m^{i,k}(p_1, ..., p_m)|^2 \; \frac{\alpha_{\rm S}}{2\pi} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi\mu^2}{2p_i \cdot p_k} \right)^\epsilon \; \frac{1}{T_i^2} \; \mathcal{V}_i(\epsilon) \; , \end{split}$$

Costas G. Papadopoulos (Athens)

< □ > < ---->

HELAC-NLO: Recent developments

Complete implementation of Nagy-Soper subtraction for NLO calculations in QCD

- □ HELAC-DIPOLES package extended
- □ Massive and massless cases included
- □ Integrated subtraction terms for massless and massive partons worked out
- □ Overall performance tested
- Comparison to results based on Catani-Seymour subtraction performed
- Random polarization and color sampling implemented and tested

G. Bevilacqua, M. Czakon, M. Kubocz and M. Worek (2013)

Used for NLO QCD calculation for 4b-jets with massive bottom quarks at the LHC

G. Bevilacqua, M. Czakon, M. Krämer, M. Kubocz and M. Worek (2013)

□ Based on a novel parton shower with an improved treatment of color and spin

Z. Nagy, D. Soper (2007-2014)

 Matching between a fixed order NLO calculation and this new parton shower under construction
 M. Czakon, B. Hartanto, M. Kraus and M. Worek (in preparation)

Massive bottom [4FS]

Bottom quarks appear only in the final state and are massive
 PDF does not contain bottom quark, n_l= 4 (u, d, c, s)
 Do not enter in the computation of the running of α_s

□ Do not enter in the evolution of the PDFs

 \Box Finite-m_b effects enter via:

 \Box Power corrections of the type $\mathcal{O}[(\mathbf{m}_{\mathbf{b}}/\mathcal{Q})^{\mathbf{n}}]$

 \Box Logarithms of the type $\mathcal{O}[\log^n(m_b/\mathcal{Q})]$

Massive bottom [4FS]

At the LHC, typically (m_b/Q) ≪ 1 and power corrections are suppressed
 While logarithms could be large (can be of initial or final state nature)
 For inclusive observables such as b-jets, logarithms can only originate from nearly collinear initial-state g → bb splitting

Large logarithms could spoil the convergence of the fixed order calculations
 Resummation could be needed

Up to NLO Accuracy Potentially Large Logarithms $\log(m_b/\mathcal{Q}) \rightarrow \log(p_{T,b}^{min}/\mathcal{Q}), \qquad m_b \ll p_{T,b}^{min} \lesssim \mathcal{Q}$ And are Less Significant Numerically

Massless bottom [5FS]

□ Under the approximation that bottom quarks from splittings have small p_T towers of $\log^n(m_b/Q)$ explicitly resummed into bottom PDF

□ For consistency with the factorization theorem, one should set $m_b = 0$ in the calculation of the matrix element

□ PDF contains bottom quark, **n**_l= 5 (**u**, **d**, **c**, **s**, **b**)

 \Box bottom quarks enter in the computation of the running of α_s

□ bottom quarks enter in the evolution of the PDFs

To all orders in perturbation theory two schemes are identical for log effects
 The way of ordering the perturbative expansion is different and at any finite order the results might not match

Maltoni, Ridolfi, Ubiali (2012) Harlander, Krämer, Schumacher (2011) Frederix, Re, Torrielli (2012)

4b-jets @ LHC

□ Four flavor scheme with $m_b \neq 0$ (4FS) versus five flavor scheme with $m_b = 0$ (5FS)

$pp \rightarrow b\bar{b}b\bar{b} + X$	σ _{LO} [pb]	σ _{NLO} [pb]	$K = \sigma_{\rm NLO}/\sigma_{\rm LO}$
MSTW2008LO/NLO (5FS)	$99.9^{+58.7(59\%)}_{-34.9(35\%)}$	$136.7^{+38.8(28\%)}_{-30.9(23\%)}$	1.37
MSTW2008LO/NLO (4FS)	$84.5^{+49.7(59\%)}_{-29.6(35\%)}$	$118.3^{+33.3(28\%)}_{-29.0(24\%)}$	1.40

□ Cross section predictions in LO and NLO for μ =H_T and m_b=4.75 GeV □ K-factor and residual scale dependence at NLO similar

- Comparing 4FS with 5FS bottom mass effects decrease the cross section by:
 18% at LO & 16% at NLO
 - □ Genuine bottom mass effects, for $p_{T,b}$ > 30 GeV of the order ~10%
 - □ Strong dependence on $p_{T,b}$ cut, for $p_{T,b} > 100$ GeV only ~1%
 - □ Scheme dependence ~5%, different PDFs and α_s
4b-jets @ LHC

□ Transverse momentum of the hardest bottom jet in 5FS & 4FS

□ Absolute prediction at NLO QCD

Predictions normalized to inclusive cross sections

G. Bevilacqua, M. Czakon, M. Krämer, M. Kubocz and M. Worek (2013)

Next-to-Leading Order QCD + Parton Shower effects on heavy quark production and evolution at the Tevatron and LHC

M.V. Garzelli, A. Kardos, C.G. Papadopoulos, Z. Trocsanyi

MTA-DE Particle Physics Research Group, Debrecen - NCSR Demokritos Athens

project status - June 2014

PowHel = HELAC-NLO + POWHEG-BOX

Interface between different event generators:

- All LO and NLO matrix-elements: HELAC-NLO http://helac-phegas.web.cern.ch/helac-phegas/
- Subtraction of IR divergencies and matching NLO + PS: POWHEG-BOX http://powhegbox.mib.infn.it/
- Parton and photon shower emissions: SMC codes (PYTHIA and HERWIG)
- Hadronization and hadron decay: SMC codes (PYTHIA and HERWIG)

OUTPUT:

Les Houches event files and predictions at both parton and hadron level with NLO QCD + Parton Shower accuracy for p-p and p- \overline{p} processes

PowHel + SMC: processes studied so far at LHC/Tevatron

- pp and $p\bar{p} \rightarrow t\bar{t}$
- pp and $p\bar{p} \rightarrow t\bar{t}j$ [arXiv:1101.2672]
- $pp \rightarrow t\bar{t}H/t\bar{t}A$ [arXiv:1108.0387], [arXiv:1201.3084]
- $pp \rightarrow t\bar{t}Z$ [arXiv:1111.1444], [arXiv:1208.2665]
- $pp \rightarrow t\bar{t}W^+$, $t\bar{t}W^-$ [arXiv:1208.2665]
- $pp \rightarrow t\bar{t}b\bar{b}$ [arXiv:1303.6291], [arXiv:1307.1347] + in preparation
- pp and $p\bar{p} \rightarrow (t\bar{t} \rightarrow W^+W^-b\bar{b}) \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ [arXiv:1405.5859]

All these processes involve the production of a $\ensuremath{t\bar{t}}$ pair.

pp and $par{p} ightarrow (tar{t} ightarrow W^+W^-bar{b}) ightarrow e^+ u_e\mu^-ar{ u}_\mu bar{b}$

* Important background to $Hb\bar{b}$ and to New Physics searches.

NLO level: G. Bevilacqua et al. [arXiv:1012.4230], A. Denner et al. [arXiv:1012.3975],
 [arXiv:1207.5018], R. Frederix [arXiv:1311.4893], F. Cascioli et al. [arXiv:1312.0546],
 G. Heinrich et al. [arXiv:1312.6659]

 NLO matched to Parton Shower: Garzelli, Kardos, Trocsanyi [arXiv:1405.5859] study at NLO level and after SMC in 3 different configurations:

1) Full NLO QCD corrections to $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$ (i.e. six particle final state): generation of LHEF events for this configuration, further evolution with SMC.

2) NLO QCD corrections just to $t\bar{t}$ on-shell production: generation of LHEF events for this configuration, further evolution with SMC which takes care of all decays in DCA (Decay Chain Approximation). Spin correlations are not included if the SMC neglects them.

3) NLO QCD corrections to $t\bar{t}$ + Decayer + SMC: the $t\bar{t}$ events in the LHEF are decayed by Decayer code, to account for spin correlations in the NWA (Narrow Width Approximation), and then passed to the SMC code.

case 1) includes all resonant and non-resonant top contributions (top treated in the Complex Mass Scheme), case 2) and 3) just include the resonant top contributions

$par{p} ightarrow e^+ u_e \mu^- ar{ u}_\mu bar{b}$ evoluted to the hadron level

Tevatron

Garzelli, Kardos, Trocsanyi [arXiv:1405.5859]

Distributions of a) invariant mass of hardest b-jet and the hardest isolated positron and of b) azimuthal separation between the hardest isolated positron and muon after full SMC. The lower inset shows the ratio of the predictions with decays of the t-quarks in DCA and Decayer compared to the complete *WWbb* computation.

* In NWA at LO, limit $m_{inv}^2(b_1, e) < m_t^2 - m_W^2$, here instead high-energy tail. * Spin correlations affect azimuthal angle distributions.

$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ evoluted to the hadron level LHC Garzelli, Kardos, Trocsanyi [arXiv:1405.5859]

Same as in previous slide, as for the LHC.

* At LHC, the high energy tail in the $m_{inv}(b_1, e)$ distribution is more pronounced than at the Tevatron.

* Spin correlations effects are also more important at the LHC than at the Tevatron.

NNLO

Repeat the one-loop "success story" ?

REDUCTION AT THE INTEGRAND LEVEL

Over the last few years very important activity to extend unitarity and integrand level reduction ideas beyond one loop

J. Gluza, K. Kajda and D. A. Kosower, "Towards a Basis for Planar Two-Loop Integrals," Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472 [hep-th]].

D. A. Kosower and K. J. Larsen, "Maximal Unitarity at Two Loops," Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180 [hep-th]].
 P. Mastrolia and G. Ossola, "On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes," JHEP 1111 (2011) 014 [arXiv:1107.6041 [hep-ph]].

S. Badger, H. Frellesvig and Y. Zhang, "Hepta-Cuts of Two-Loop Scattering Amplitudes," JHEP 1204 (2012) 055 [arXiv:1202.2019 [hep-ph]].

Y. Zhang, "Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry Methods," JHEP 1209 (2012)
 042 [arXiv:1205.5707 [hep-ph]].

P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, "Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division," arXiv:1209.4319 [hep-ph].

P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, "Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes," arXiv:1307.5832 [hep-ph].

イロト イヨト イヨト

TWO-LOOP AMPLITUDES

- Reduction at the integrand level \rightarrow helicity amplitudes
- Generic two-loop graph: iGraph

R. H. P. Kleiss, I. Malamos, C. G. Papadopoulos and R. Verheyen, arXiv:1206.4180 [hep-ph].

 $D(l_1 + p_i)$, $D(l_2 + p_j)$, $D(l_1 + l_2 + p_k)$

TWO-LOOP AMPLITUDES

- Reduction at the integrand level \rightarrow helicity amplitudes
- Generic two-loop graph: iGraph

R. H. P. Kleiss, I. Malamos, C. G. Papadopoulos and R. Verheyen, arXiv:1206.4180 [hep-ph].

 $D(l_1 + p_i)$, $D(l_2 + p_j)$, $D(l_1 + l_2 + p_k)$

The simplest case: $n \rightarrow n-1$ reduction

The general strategy consists in finding polynomials $\Pi_j \equiv \Pi_j(l_1, l_2)$

$$\sum_{j=1}^{n_1} \prod_j D(l_1 + p_j) + \sum_{j=n_1+1}^{n_1+n_2} \prod_j D(l_1 + l_2 + p_j) + \sum_{j=n_1+n_2+1}^{n} \prod_j D(l_2 + p_j) = 1$$

Is this plausible at all ?

TWO-LOOP AMPLITUDES

The simplest case: $n \rightarrow n-1$ reduction

The general strategy consists in finding polynomials $\Pi_j \equiv \Pi_j(l_1, l_2)$

$$\sum_{j=1}^{n_1} \prod_j D(l_1 + p_j) + \sum_{j=n_1+1}^{n_1+n_2} \prod_j D(l_1 + l_2 + p_j) + \sum_{j=n_1+n_2+1}^{n} \prod_j D(l_2 + p_j) = 1$$

Is this plausible at all ? Hilbert's Nullstellensatz theorem

Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem" see Satz) is a theorem which establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry, an important branch of mathematics. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert who proved Nullstellensatz and several other important related theorems named after him (like Hilbert's basis theorem).

 $1 = g_1 f_1 + \cdots + g_s f_s \ g_i, f_i \in k[x_1, \ldots, x_n]$

Janos Kollar, J. Amer. Math. Soc., Vol. 1, No. 4. (Oct., 1988), pp 963-975

$$\deg g_i f_i \leq \max \{3, d\}^n \ d = \max \deg f_i \ 3^8 = 6561$$

M. Sombra, Adv. in Appl. Math. 22 (1999), 271-295

< ロト < 同ト < ヨト < ヨト

$$\deg g_i f_i \le 2^{n+1} \ 2^9 = 512$$

• Write the "OPP-type" equation at two loops

$$\frac{N(l_1, l_2; \{p_i\})}{D_1 D_2 \dots D_n} = \sum_{m=1}^{\min(n, 8)} \sum_{S_{m:n}} \frac{\Delta_{i_1 i_2 \dots i_m}(l_1, l_2; \{p_i\})}{D_{i_1} D_{i_2} \dots D_{i_m}}$$

 $S_{m;n}$ stands for all subsets of m indices out of the n ones

Multivariate Division and Groebner Basis

D. Cox, J. Little, D. O'Shea Ideals, Varieties and Algorithms

 \bullet Given any ideal I we can define a unique Groebner basis up to ordering $< g_1, \ldots, g_s >$

$$f = h_1g_1 + \ldots + h_ng_n + r$$

multivariate polynomial division

Strategy:

- Start with a set of polynomials $I = < d_1, \ldots, d_n >$
- Find the GB, $G = \langle g_1, \ldots, g_s \rangle$
- Perform the division of an arbitrary polynomial N

$$N = h_1g_1 + \ldots + h_ng_s + v$$

• Express back g_i in terms of d_i

$$N = \tilde{h}_1 d_1 + \ldots + \tilde{h}_n d_n + v$$

OPP AT TWO LOOPS

• Planar topology (4,1,4)

$$\begin{split} D_1 &= l_1^2 - M_1^2, D_2 = (l_1 + p_1)^2 - M_2^2, \\ D_3 &= (l_1 + p_2)^2 - M_3^2, D_4 = (l_1 + p_3)^2 - M_4^2, \\ D_5 &= l_2^2 - M_5^2, D_6 = (l_2 + p_4)^2 - M_6^2, \\ D_7 &= (l_2 + p_5)^2 - M_7^2, D_8 = (l_2 + p_6)^2 - M_8^2, \\ D_9 &= (l_1 + l_2)^2 - M_9^2 \end{split}$$

•: *l*₁

with

$$\begin{aligned} \mathbf{v}_{1}^{\mu} &= \frac{\delta_{p_{1}p_{2}p_{3}}^{\mu_{1}p_{2}p_{3}}}{\Delta} \ \mathbf{v}_{2}^{\mu} &= \frac{\delta_{p_{1}p_{2}p_{3}}^{\rho_{1}p_{2}p_{3}}}{\Delta} \ \mathbf{v}_{3}^{\mu} &= \frac{\delta_{p_{1}p_{2}p_{3}}^{\rho_{1}p_{2}p_{3}}}{\Delta} \ \eta^{\mu} &= \frac{\varepsilon^{\mu_{p_{1}p_{2}p_{3}}}}{\sqrt{\Delta}} \end{aligned} \\ \\ \Delta &= \delta_{p_{1}p_{2}p_{3}}^{\rho_{1}p_{2}p_{3}} &= \varepsilon^{p_{1}p_{2}p_{3}} \varepsilon_{p_{1}p_{2}p_{3}} = \begin{vmatrix} p_{1} \cdot p_{1} & p_{1} \cdot p_{2} & p_{1} \cdot p_{3} \\ p_{2} \cdot p_{1} & p_{2} \cdot p_{2} & p_{2} \cdot p_{3} \\ p_{3} \cdot p_{1} & p_{3} \cdot p_{2} & p_{3} \cdot p_{3} \end{vmatrix} \end{aligned}$$

2

•: l_2 , the same as above with p_4, p_5, p_6 replacing p_1, p_2, p_3 accordingly. The momenta $p_i, i = 1, \ldots, 6$ are arbitrary. The basis coefficients may be read as $l_1^{\mu} = \sum_{i=1}^3 z_i v_i^{\mu} + z_4 \eta^{\mu}$, with $z_i = l_1 \cdot p_i, i = 1 \ldots, 3$ (l_2 , with w_i replacing z_i).

As an example I reduced a two-loop 7-propagator graph contributing to $q ar q o \gamma^* \gamma^*$

$$nl := 155$$

$$1, 1, " -... ", \frac{4347392}{81} - \frac{2891776}{243} \sqrt{2} \sqrt{3} + \frac{425984}{27} z5 - \frac{134144}{27} \sqrt{3} \sqrt{2} z5 + \frac{1921024}{27} ws - \frac{1358848}{81} \sqrt{3} \sqrt{2} ws + \frac{66560}{3} ws zs - \frac{20480}{3} ws zs + \sqrt{2} \sqrt{3} + \frac{16334}{3} z5 ws zs + \frac{16384}{27} ws - \frac{1358848}{245} ws^2 \sqrt{2} \sqrt{3} + \frac{20480}{3} ws zs + \sqrt{2} \sqrt{3} + \frac{16384}{3} z5 ws zs + \frac{16384}{27} ws^2 - \frac{136144}{245} ws^2 - \frac{53248}{245} ws^2 \sqrt{2} \sqrt{3} + \frac{4008 zs^2}{3}, "....,", 16$$

$$2, dd_3 dd_5 dd_1, " -... ", \frac{3136}{115} \sqrt{2} \sqrt{3} + \frac{20480}{15} \sqrt{2} \sqrt{3} + \frac{2048}{24} ws^2 \sqrt{2} \sqrt{3} + \frac{8192}{9} ws^2, ".....", 3$$

$$3, dd_3 dd_4 dd_5 dd_4 ds_1 ... ", \frac{1970176}{5625} ws - \frac{2063392}{1875} ws + \frac{575488}{16875} \sqrt{3} \sqrt{2} ws - \frac{956116}{1875} \sqrt{2} \sqrt{3} wz - \frac{1407232}{625} \sqrt{2} \sqrt{3} wz - \frac{1407232}{625}, "......", 6$$

$$4, dd_3 dd_5 dd_9 w^2, ... ", -\frac{2048}{9} ws + \frac{2048}{5625} \sqrt{2} \sqrt{3} wz - \frac{512}{9} \sqrt{2} \sqrt{3} wz + \frac{512}{9} \sqrt{2} \sqrt{3} wz - \frac{512}{3} \sqrt{2} \sqrt{3} + 512, ".....", 6$$

$$5, dd_6 dd_8 dd_4 dd_3, "... ", \frac{309248}{16875} \sqrt{3} \sqrt{2} ws + \frac{525284}{5625} \sqrt{2} \sqrt{3} wz - \frac{1167232}{1875} ws + \frac{1167232}{5125} \sqrt{2} \sqrt{3}, ".....", 6$$

$$6, dd_5 dd_9 dd_6 dd_9, " -... ", -\frac{2168}{9} \sqrt{2} \sqrt{3} \sqrt{2} \sqrt{3} + \frac{2420}{1875} wz + \frac{1167232}{1875} wz + \frac{1167232}{7} \sqrt{3} \sqrt{2} ws, ".....", 6$$

$$6, dd_5 dd_9 dd_6 dd_9, " -... ", -\frac{2168}{9} \sqrt{2} \sqrt{3} \sqrt{2} \sqrt{3} + \frac{2420}{29} wz + \frac{1167232}{7} \sqrt{3} \sqrt{2} ws, ".....", 6$$

$$6, dd_5 dd_9 dd_6 dd_9, " -... ", -\frac{2168}{9} \sqrt{2} \sqrt{3} \sqrt{2} \sqrt{3} + \frac{2420}{29} wz + \frac{1167232}{7} \sqrt{3} \sqrt{2} wz + \frac{167232}{7} \sqrt{3} \sqrt{2} wz + \frac{167232}{7} \sqrt{3} \sqrt{2} \sqrt{3} wz + \frac{167232}{7} \sqrt{3} \sqrt{2} wz + \frac{1024}{27} z, ".....", 6$$

$$6, dd_5 dd_9 dd_6 dd_9 dd_8 dd_9 w - \frac{1024}{7} \sqrt{2} \sqrt{3} - \frac{256}{9} \sqrt{2} \sqrt{3} wz + \frac{10240}{27} z, ".....", 2$$

$$7, dd_5 dd_9 dd_6 dd_9 w^2, ".....", \frac{2176}{9} \sqrt{2} \sqrt{3} - \frac{2169}{9} \sqrt{2} \sqrt{3} w^2 + \frac{256}{29} \sqrt{3} \sqrt{2} wz , ".....", 2$$

$$1, dd_6 dd_9 dd_8 dd_8 w^2, ".....", \frac{15361}{29} \sqrt{2} \sqrt{3} - \frac{116332}{29} \sqrt{2} \sqrt{3} w^2 + \frac{1024}{29} wz + \frac{256}{27} \sqrt{3} \sqrt{2} wz , ".....", 6$$

$$10, dd_9 dd_9 dd_8 dd_9, ".$$

OPP AT TWO LOOPS

•: l_2 , the same as above with p_4, p_5, p_6 replacing p_1, p_2, p_3 accordingly. The momenta $p_i, i = 1, ..., 6$ are arbitrary. The basis coefficients may be read as $l_1^{\mu} = \sum_{i=1}^3 z_i v_i^{\mu} + z_4 \eta^{\mu}$, with $z_i = l_1 \cdot p_i, i = 1 \dots, 3$ (l_2 , with w_i replacing z_i).

As an example I reduced a two-loop 7-propagator graph contributing to $q ar q o \gamma^* \gamma^*$

$$\frac{\Pi(\{z_i\}, \{w_j\})}{D_{i_1}D_{i_2}\dots D_{i_m}} \to \text{spurious} \oplus \text{nonscalar integrals}$$

• IBPI to Master Integrals

S. Badger, talk in Amplitudes 2013

Rational terms

$$\begin{split} l_1 &\to l_1 + l_1^{(2\varepsilon)}, \ l_2 \to l_2 + l_2^{(2\varepsilon)}, \ l_{1,2} \cdot l_{1,2}^{(2\varepsilon)} = 0\\ \left(l_1^{(2\varepsilon)}\right)^2 &= \mu_{11}, \ \left(l_2^{(2\varepsilon)}\right)^2 = \mu_{22}, \ l_1^{(2\varepsilon)} \cdot l_2^{(2\varepsilon)} = \mu_{12}\\ &\left\{l_1^{(4)}, l_2^{(4)}\right\} \to \left\{l_1^{(4)}, l_2^{(4)}, \mu_{11}, \mu_{22}, \mu_{12}\right\} \end{split}$$

Welcome: $I = \sqrt{I}$ prime ideals

• R₂ terms

MASTER INTEGRALS: THE CURRENT APPROACH

- *m* independent momenta *l* loops, N = l(l+1)/2 + lm scalar products
- basis composed by $D_1 \dots D_N$, allows to express all scalar products $D_i = (\{k, l\} + p_i)^2 - M_i^2$
- $F[a_1,\ldots,a_N]$

$$\int d^d k d^d l \quad \frac{\partial}{\partial \{k^{\mu}, l^{\mu}\}} \left(\frac{\{k^{\mu}, l^{\mu}, v^{\mu}\}}{D_1^{a_1} \dots D_N^{a_N}} \right) = 0$$

- IBP Laporta: FIRE, AIR, Reduze reduce these to MI
- MI computed, Feynman parameters, Mellin-Barnes, Differential Equations

Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B 302 (1993) 299.

T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329].

J. M. Henn, Phys. Rev. Lett. 110 (2013) 25, 251601 [arXiv:1304.1806 [hep-th]].

DIFFERENTIAL EQUATIONS APPROACH

- Library of MI à la one-loop
- Iterated Integrals K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831
- Polylogarithms, Symbol algebra

A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Phys. Rev. Lett. 105 (2010) 151605.

C. Duhr, H. Gangl and J. R. Rhodes, JHEP 1210 (2012) 075 [arXiv:1110.0458 [math-ph]].

$$G(a_n,\ldots,a_1,x)=\int_0^x dt\frac{1}{t-a_n}G(a_{n-1},\ldots,a_1,t)$$

with the special cases, G(x) = 1 and

$$G\left(\underbrace{0,\ldots,0}_{n},x\right) = \frac{1}{n!}\log^{n}(x)$$

DIFFERENTIAL EQUATIONS APPROACH

$$\int \frac{d^d k}{i\pi^{d/2}} \frac{1}{D_0 D_1 \dots D_{n-1}}$$

with $D_i = (k + p_0 + ... + p_i)^2$ and take for convenience $p_0 = 0$. It can be considered as a function of the external momenta p_i . It belongs to the topology defined by

$$G_{a_1...a_n} = \int \frac{d^d k}{i\pi^{d/2}} \frac{1}{D_0^{a_1} D_1^{a_2} \dots D_{n-1}^{a_n}}$$

namely $G_{1...1}$.

$$p_j^{\mu} \frac{\partial}{\partial p_i^{\mu}} G[a_1, \ldots, a_n] \rightarrow \sum G[a_1', \ldots, a_n']$$

$$p_1^{\mu} \frac{\partial}{\partial p_1^{\mu}} (k + p_1)^2 = 2(k + p_1) \cdot p_1 = (k + p_1)^2 + p_1^2 - k^2$$

- Find the proper parametrization
- Boundary conditions
- Bring the system of equations in a form suitable to express the MI in terms of GPs

$$p_j^{\mu} \frac{\partial}{\partial p_i^{\mu}} G[a_1, \ldots, a_n] \rightarrow \sum G[a_1', \ldots, a_n']$$

$$p_{1}^{\mu} \frac{\partial}{\partial p_{1}^{\mu}} (k + p_{1})^{2} = 2 (k + p_{1}) \cdot p_{1} = (k + p_{1})^{2} + p_{1}^{2} - k^{2}$$

- Find the proper parametrization
- Boundary conditions
- Bring the system of equations in a form suitable to express the MI in terms of GPs

$$p_j^{\mu} \frac{\partial}{\partial p_i^{\mu}} G[a_1, \ldots, a_n] \rightarrow \sum G[a_1', \ldots, a_n']$$

$$p_{1}^{\mu} \frac{\partial}{\partial p_{1}^{\mu}} (k + p_{1})^{2} = 2 (k + p_{1}) \cdot p_{1} = (k + p_{1})^{2} + p_{1}^{2} - k^{2}$$

- Find the proper parametrization
- Boundary conditions
- Bring the system of equations in a form suitable to express the MI in terms of GPs

$$p_j^{\mu} \frac{\partial}{\partial p_i^{\mu}} G[a_1, \ldots, a_n] \rightarrow \sum G[a_1', \ldots, a_n']$$

$$p_{1}^{\mu} \frac{\partial}{\partial p_{1}^{\mu}} (k + p_{1})^{2} = 2 (k + p_{1}) \cdot p_{1} = (k + p_{1})^{2} + p_{1}^{2} - k^{2}$$

- Find the proper parametrization
- Boundary conditions
- Bring the system of equations in a form suitable to express the MI in terms of GPs

DIFFERENTIAL EQUATIONS APPROACH

J. M. Henn, K. Melnikov and V. A. Smirnov, arXiv:1402.7078 [hep-ph].

 $S = (q_1 + q_2)^2 = (q_3 + q_4)^2, \quad T = (q_1 - q_3)^2 = (q_2 - q_4)^2, \quad U = (q_1 - q_4)^2 = (q_2 - q_3)^2;$

$$\frac{S}{M_3^2} = (1+x)(1+xy), \quad \frac{T}{M_3^2} = -xz, \quad \frac{M_4^2}{M_3^2} = x^2y,$$
$$d \,\vec{f}(x, y, z; \epsilon) = \epsilon \, d \,\tilde{A}(x, y, z) \,\vec{f}(x, y, z; \epsilon)$$

$$ilde{A} = \sum_{i=1}^{15} ilde{A}_{lpha_i} \log(lpha_i)$$

 $\alpha = \{x, y, z, 1+x, 1-y, 1-z, 1+xy, z-y, 1+y(1+x)-z, xy+z, 1+x(1+y-z), 1+xz, 1+y-z, z+x(z-y)+xyz, z-y+yz+xyz\}.$

C. G. Papadopoulos, arXiv:1401.6057 [hep-ph].

Making the whole procedure systematic (algorithmic) and straightforwardly expressible in terms of GPs.

$$G_{11...1}(x) = \int \frac{d^d k}{i\pi^{d/2}} \frac{1}{(k^2) (k + x p_1)^2 (k + p_1 + p_2)^2 \dots (k + p_1 + p_2 + \dots + p_n)^2}$$

Now the integral becomes a function of x, which allows to define a differential equation with respect to x, schematically given by

$$\frac{\partial}{\partial x}G_{11...1}(x) = -\frac{1}{x}G_{11...1}(x) + xp_1^2G_{12...1} + \frac{1}{x}G_{02...1}$$

and using IBPI we obtain

1

$$\begin{split} m_1 \times G_{121} &+ \frac{1}{x} G_{021} &= \left(\frac{1}{x-1} + \frac{1}{x-m_3/m_1} \right) \left(\frac{d-4}{2} \right) G_{111} \\ &+ \frac{d-3}{m_1-m_3} \left(\frac{1}{x-1} - \frac{1}{x-m_3/m_1} \right) \left(\frac{G_{101} - G_{110}}{x} \right) \end{split}$$

The integrating factor M is given by

$$M = x \left(1 - x\right)^{\frac{4-d}{2}} \left(-m_3 + m_1 x\right)^{\frac{4-d}{2}}$$

and the DE takes the form, $d = 4 - 2\varepsilon$,

$$\frac{\partial}{\partial x}MG_{111} = c_{\Gamma}\frac{1}{\varepsilon}\left(1-x\right)^{-1+\varepsilon}\left(-m_{3}+m_{1}x\right)^{-1+\varepsilon}\left(\left(-m_{1}x^{2}\right)^{-\varepsilon}-\left(-m_{3}\right)^{-\varepsilon}\right)$$

• Integrating factors $\epsilon = 0$ do not have branch points

 \bullet DE can be straightforwardly integrated order by order \rightarrow GPs.

$$G_{111}=rac{c_{\Gamma}}{(m_1-m_3)x}\mathcal{I}$$

$$\begin{split} \mathcal{I} &= \frac{-(-m_1)^{-\varepsilon} + (-m_3)^{-\varepsilon} + ((-m_1)^{-\varepsilon} - (-m_3)^{-\varepsilon}) x_1}{\varepsilon^2} \\ &+ \frac{\left((-m_1)^{-\varepsilon} - (-m_3)^{-\varepsilon}\right) x_1 G\left(\frac{m_3}{m_1}, 1\right) - \left((-m_1)^{-\varepsilon} - (-m_3)^{-\varepsilon}\right) \left(G\left(\frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right)\right) + x_1 \left(-2G(0, 1, x)(-m_1)^{-\varepsilon} + (-m_1)^{-\varepsilon}\right) - \left(G\left(\frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right)\right) + x_1 \left(-2G(0, 1, x)(-m_1)^{-\varepsilon} + 2G\left(0, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right)\right) + x_1 \left(-2G(0, 1, x)(-m_1)^{-\varepsilon} + 2G\left(0, \frac{m_3}{m_1}, x\right)(-m_1)^{-\varepsilon} + 2G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - (-m_3)^{-\varepsilon} - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - (-m_3)^{-\varepsilon} - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - \left((-m_1)^{-\varepsilon} - (-m_3)^{-\varepsilon}\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - (-m_3)^{-\varepsilon} - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - \left((-m_1)^{-\varepsilon} - (-m_3)^{-\varepsilon}\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, \frac{m_3}{m_1}, 1\right) - G\left(\frac{m_3}{m_1}, \frac{m_3}{m_1}, \frac{m_3}{m_1}$$

Costas G. Papadopoulos (Athens)

Loopfest xiii 38 / 42

We are interested in $G_{0101011}$. The DE involves also the MI $G_{0201011}$, so we have a system of two coupled DE, as follows:

$$\begin{array}{ll} \frac{\partial}{\partial x} \left(M_{0101011} G_{0101011} \right) &= \frac{A_3 (2 - 3\varepsilon) (1 - x)^{-2\varepsilon} x^{\varepsilon - 1} (m_1 x - m_3)^{-2\varepsilon}}{2\varepsilon (2\varepsilon - 1)} \\ &+ \frac{m_1 \varepsilon (1 - x)^{-2\varepsilon} (m_1 x - m_3)^{-2\varepsilon}}{2\varepsilon - 1} g(x) \end{array}$$

$$\frac{\partial}{\partial x} \left(M_{0201011} \mathsf{G}_{0201011} \right) = \frac{A_3 (3\varepsilon - 2)(3\varepsilon - 1)(-m_1)^{-2\varepsilon} (1-x)^{2\varepsilon - 1} x^{-3\varepsilon} (m_1 x - m_3)^{2\varepsilon - 1}}{+(2\varepsilon - 1)(3\varepsilon - 1)(1-x)^{2\varepsilon} - \overset{2\varepsilon}{1}^2} (m_1 x - m_3)^{2\varepsilon - 1} f(x)$$

where $f(x) \equiv M_{0101011} G_{0101011}$ and $g(x) \equiv M_{0201011} G_{0201011}$. $M_{0201011} = (1-x)^{2\varepsilon} x^{\varepsilon+1} (m_1 x - m_3)^{2\varepsilon}$ and $M_{0101011} = x^{\varepsilon}$

The singularity structure of the right-hand side is now richer. Singularities at x = 0 are all proportional to $x^{-1-\varepsilon}$ and $x^{-1-\varepsilon}$ and can easily be integrated by the following decomposition

$$\begin{split} &\int\limits_{0}^{x} dt \ t^{-1-2\varepsilon} F(t) = F(0) \int\limits_{0}^{x} dt \ t^{-1-2\varepsilon} + \int\limits_{0}^{x} dt \ \frac{F(t) - F(0)}{t} t^{-2\varepsilon} \\ &= F(0) \frac{x^{-2\varepsilon}}{(-2\varepsilon)} + \int\limits_{0}^{x} dt \ \frac{F(t) - F(0)}{t} \left(1 - 2\varepsilon \log\left(t\right) + 2\varepsilon^{2} \log^{2}\left(t\right) + \ldots \right) \end{split}$$

- One-loop up to 5-point at order ϵ
- Two-loop triangles and 4-point MI
- Working/finishing double boxes with two external off-shell legs (more than 100 MI) → planar topologies completed!
- Completing the list of all MI with arbitrary off-shell legs (m = 0).

The Simplified Differential Equations Approach

 Get DE in one parameter, that always go to the argument of GPs, all weights being independent of x, therefore no limitation on the number of scales (multi-leg).

• Boundary conditions, namely the $x \rightarrow 0$ limit, defined by the DE itself

 \bullet All coupled systems of DE (up to fivefold) satisfying the decoupling criterion, solvable order by order in ϵ

• Get DE in one parameter, that always go to the argument of GPs, all weights being independent of *x*, therefore no limitation on the number of scales (multi-leg).

• Boundary conditions, namely the $x \rightarrow 0$ limit, defined by the DE itself

 \bullet All coupled systems of DE (up to fivefold) satisfying the decoupling criterion, solvable order by order in ϵ

• Get DE in one parameter, that always go to the argument of GPs, all weights being independent of *x*, therefore no limitation on the number of scales (multi-leg).

• Boundary conditions, namely the $x \rightarrow 0$ limit, defined by the DE itself

• All coupled systems of DE (up to fivefold) satisfying the decoupling criterion, solvable order by order in ϵ
- In a few years the new "wish list" should be completed $pp \rightarrow t\bar{t}, pp \rightarrow W^+W^-, pp \rightarrow W/Z + nj, pp \rightarrow H + nj, \dots$
- ${\scriptstyle \bullet}$ Virtual amplitudes: Reduction at the integrand level \oplus IBP
- Master Integrals
- Virtual-Real

- Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]]
- A HELAC-NNLO framework ?

- In a few years the new "wish list" should be completed $pp \rightarrow t\bar{t}, pp \rightarrow W^+W^-, pp \rightarrow W/Z + nj, pp \rightarrow H + nj, \dots$
- ${\scriptstyle \bullet}$ Virtual amplitudes: Reduction at the integrand level \oplus IBP
- Master Integrals
- Virtual-Real

- Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]]
- A HELAC-NNLO framework ?

- In a few years the new "wish list" should be completed $pp \rightarrow t\bar{t}, pp \rightarrow W^+W^-, pp \rightarrow W/Z + nj, pp \rightarrow H + nj, \dots$
- $\bullet\,$ Virtual amplitudes: Reduction at the integrand level $\oplus\,$ IBP
- Master Integrals
- Virtual-Real

- Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]]
- A HELAC-NNLO framework ?

- In a few years the new "wish list" should be completed $pp \rightarrow t\bar{t}, pp \rightarrow W^+W^-, pp \rightarrow W/Z + nj, pp \rightarrow H + nj, \dots$
- $\bullet\,$ Virtual amplitudes: Reduction at the integrand level $\oplus\,$ IBP
- Master Integrals
- Virtual-Real

- Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]]
- A HELAC-NNLO framework ?

- In a few years the new "wish list" should be completed $pp \rightarrow t\bar{t}, pp \rightarrow W^+W^-, pp \rightarrow W/Z + nj, pp \rightarrow H + nj, \dots$
- $\bullet\,$ Virtual amplitudes: Reduction at the integrand level $\oplus\,$ IBP
- Master Integrals
- Virtual-Real

- Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]]
- A HELAC-NNLO framework ?

- In a few years the new "wish list" should be completed $pp \rightarrow t\bar{t}, pp \rightarrow W^+W^-, pp \rightarrow W/Z + nj, pp \rightarrow H + nj, \dots$
- $\bullet\,$ Virtual amplitudes: Reduction at the integrand level $\oplus\,$ IBP
- Master Integrals
- Virtual-Real

- Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]].
- A HELAC-NNLO framework ?

- In a few years the new "wish list" should be completed $pp \rightarrow t\bar{t}, pp \rightarrow W^+W^-, pp \rightarrow W/Z + nj, pp \rightarrow H + nj, \dots$
- $\bullet\,$ Virtual amplitudes: Reduction at the integrand level $\oplus\,$ IBP
- Master Integrals
- Virtual-Real

- Real-Real STRIPPER, M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]].
- A HELAC-NNLO framework ?