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• collimated, energetic 
    sprays of particles
• are ubiquitous in collider 
    phenomenology
• boundary between 
   theory and experiments

• LHC energy (104 GeV) ≫ electro-weak scale (102 GeV)
• EW-scale particles (new physics, Z/W/H/top) are abundantly 
   produced with a large boost 
• their decay-products are then collimated and can be 
   reconstructed in a single jet

Jets and their properties
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Searches
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exploit jets’ properties 
to distinguish

signal jets from bkgd jets

pt > 2m/R

RR
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• It’s the simplest variable describing the structure of a jet
• How well can we compute it ?
• Jet mass distributions are affected by double (soft & collinear)   
   logarithms                                             

• Reliable estimates of jet shapes should include:
• fixed-order calculations at NLO (OK with public codes)
• resummed (N)NLL predictions

Jet mass

1
�

d�

dm2
J

=
1

m2
J


↵sA1 ln

m2
J

p2
T

+ ↵2
sA2 ln3 m2

J

p2
T

+ . . .

�

5



NLL calculation of the jet mass in p-p collision                         
       Banfi, Dasgupta, Khelifa-Kerfa and S.M. (2010) 

Dasgupta, Khelifa-Kerfa, S.M. and Spannowsky (2012)

Calculations also in SCET                                                              
Chien, Kelley, Schwartz and Zhu (2012) 

                                                            Jouttenus, Stewart, Tackmann and Waalewijn  (2013) 

                      
For an isolated jet (small-R limit) the NLL cumulative distribution is

Jet mass: all-order calculations
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Beyond the mass: substructure
• Multiple interactions (UE and pile-up) shift background peak 
   to the EW region
• Need to go beyond the mass and exploit jet substructure 
• Grooming and Tagging:

1. clean the jets up by removing soft junk
2. identify the features of hard decays and cut on them                                                                               
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• Multiple interactions (UE and pile-up) shift background peak 
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• Grooming and Tagging:

1. clean the jets up by removing soft junk
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Trimming

1. Take all particles in a jet and re-cluster them with a 
   smaller jet radius Rsub < R
2. Keep all subjets for which ptsubjet > zcut pt
3. Recombine the subjets to form the trimmed jet

recluster

on scale Rsub

discard subjets

with < zcut pt

Krohn, Thaler and Wang (2010)

• a theorist’s worry: complicated algorithms with many
   parameters
• Q: Are we giving up on calculability / precision QCD ?
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3

Trimming: all orders
One gets exponentiation of LO (+ running coupling)
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A: groomed-mass distributions understood with resummation
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Soft drop
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• Soft Drop: recursive de-clustering of a jet that checks

1 2

1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with
numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets
[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques
have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–
89], and jet substructure is likely to become even more relevant with the anticipated increase
in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there
is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These
include more traditional jet mass and jet shape distributions [90–95] as well as more so-
phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered
the analytic behavior of three of the most commonly used jet tagging/grooming methods—
trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass
distributions, this study showed how their qualitative and quantitative features could be un-
derstood with the help of logarithmic resummation. Armed with this analytic understanding
of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)
which exhibits some surprising features in the resulting groomed jet mass distribution, in-
cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],
and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-
ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like
any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in
order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying
event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two
constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an
angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree
of jet grooming is controlled by zcut and �, with � !1 returning back an ungroomed jet. As
we explain in Sec. 2, this procedure can be extended to jets with more than two constituents
with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic
behavior of the soft drop procedure, particularly as the angular exponent � is varied. There
are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).

– 2 –

Trimmed

BDRS (2008)
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when � is small. Similarly, because the soft drop procedure does not change the structure of
collinear emissions, observables like the groomed jet energy are IRC safe. Note that running
� > 0 soft drop in tagging mode is not IRC safe, since a jet would (would not) be tagged if
it contained two (one) collinear particles.

In the strict � = 0 or mMDT limit, collinear radiation is only maintained if z > zcut.
Because soft-collinear radiation is vetoed, the resulting jet mass (and C

(↵)
1 ) distributions will

only exhibit single logarithms, as emphasized in Refs. [59, 60]. Because the structure of
collinear emissions is modified, observables like groomed jet energy are only IRC safe if soft
drop is used in tagging mode, since that forces the jet to have a hard two-prong structure,
which regulates the collinear singularity. We will see in Sec. 5, however, that � = 0 grooming
mode is still “Sudakov safe” [105].

Finally, for � < 0, there are no logarithmic structures for observables like groomed jet
mass at arbitrarily low values of the observable. E↵ectively, soft drop with negative � acts
like a cut which enforces C

(↵)
1 > z

↵/|�|
cut , and this cut regulates the soft-collinear singularities.

For example, � = �1 roughly corresponds to a cut on the relative transverse momentum of
the two prongs under scrutiny. Like for � = 0, � < 0 is only IRC safe in tagging mode.

3 Energy Correlation Functions after Soft Drop

Generalized energy correlation functions ECF (N, ↵) and their double ratios C
(↵)
N�1 were in-

troduced in Ref. [44] (see also Refs. [32, 106] for N = 2). In this paper, we only consider the
double ratio for N = 2 (hereafter referred to as simply the energy correlation functions):

C
(↵)
1 =

ECF (2, ↵) ECF (0, ↵)
ECF (1, ↵)2

, (3.1)

where

ECF (0, ↵) = 1,
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X
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X
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✓
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R0

◆↵

. (3.2)

In this study, we will measure C
(↵)
1 on jets which have been groomed according to the soft-

drop declustering described above. We will work to lowest non-trivial order in zcut, such that
we can ignore the e↵ect of grooming on ECF (1, ↵). As stated above, we will focus on central
jets (y = 0) and assume R0 ⌧ 1. In those limits,

C
(↵)
1 '

X

i<j

zizj

✓
✓ij

R0

◆↵

, (3.3)

where zi ' Ei/Ejet is the energy fraction carried by particle i, and ✓ij is the opening angle
between particles i and j. Up to power-suppressed e↵ects in R0, the results of this paper can
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(↵)
N�1 were in-

troduced in Ref. [44] (see also Refs. [32, 106] for N = 2). In this paper, we only consider the
double ratio for N = 2 (hereafter referred to as simply the energy correlation functions):

C
(↵)
1 =

ECF (2, ↵) ECF (0, ↵)
ECF (1, ↵)2

, (3.1)

where

ECF (0, ↵) = 1,

ECF (1, ↵) =
X

i2jet

pT i,

ECF (2, ↵) =
X

i<j 2jet

pT i pTj

✓
�Rij

R0

◆↵

. (3.2)

In this study, we will measure C
(↵)
1 on jets which have been groomed according to the soft-

drop declustering described above. We will work to lowest non-trivial order in zcut, such that
we can ignore the e↵ect of grooming on ECF (1, ↵). As stated above, we will focus on central
jets (y = 0) and assume R0 ⌧ 1. In those limits,

C
(↵)
1 '

X

i<j

zizj

✓
✓ij

R0

◆↵

, (3.3)

where zi ' Ei/Ejet is the energy fraction carried by particle i, and ✓ij is the opening angle
between particles i and j. Up to power-suppressed e↵ects in R0, the results of this paper can
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Larkoski, Salam and Thaler (2013)

• large-angle soft is removed; soft-collinear ~β 
• non-global logs are power-suppressed
• mMDT (β=0) is remarkable: only single (collinear) logs
• better agreement between MC and analytics
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• Analytic control opens up the possibility of understanding 
   different properties of groomed jets

• Good agreement between analytics, MC and jet-area methods
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• What is the amount of energy which has been groomed away ?

• Not collinear safe for β=0 (mMDT) 

On the other hand, Eq. (5.2) has a smooth � ! 0 limit, and therefore is still calculable
(despite being IRC unsafe). Specifically, we are calculating the �E distribution at a fixed
groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC unsafe)
singularity at Rg ! 0, but this is regulated by the Sudakov factor in the Rg distribution.
This property was referred to as “Sudakov safety” in Ref. [105]. As we will now show, the
way in which IRC unsafety but Sudakov safety manifests itself for �E is rather peculiar.

The behavior of �E for � = 0 is easiest to study by computing the cumulative distribution
of the energy drop at fixed coupling. We will also take the Laplace conjugate parameter ⌫ !
1 to suppress multiple emissions e↵ects. This limit removes the inverse Laplace transform
and turns the exponential factor in Eq. (5.4) into the constraint that z > �E . We emphasize
that the ⌫ ! 1 limit is only taken to simplify the following discussion; the fixed-coupling
energy loss distribution with the full multiple emissions e↵ect exhibits the same properties.

At fixed-coupling, the cumulative distribution of the groomed jet radius is

⌃radius(Rg)
f.c.= exp

"
�↵s

⇡

Z R0

Rg

d✓

✓

Z 1

zcut

dz pi(z) ⇥

 
z � zcut

✓�

R�
0

!#

' exp

�↵s

⇡
Ci

✓
� log2 R0

Rg
� 2 log zcut log

R0

Rg
+ 2Bi log

R0

Rg

◆�
, (5.5)

where we have ignored terms suppressed by positive powers of zcut and �E . The cumulative
distribution of the energy drop at fixed groomed jet radius is

e⌃(Rg,�E) f.c.= exp

"
�↵s

⇡

Z R0

Rg

d✓

✓
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�E

dz pi(z) ⇥
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��E
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2 log

zcut

�E
log

R0

Rg
� � log2 R0

Rg

◆�

+ ⇥
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R�
g

R�
0

!
⇥(zcut ��E) exp


�↵s

⇡

Ci

�
log2 zcut

�E

�
. (5.6)

Plugging these expressions into Eq. (5.2) in the ⌫ ! 1 limit, we find the cumulative distri-
bution of the groomed energy drop to be

⌃energy-drop(�E) =
log zcut �Bi

log �E �Bi
+

⇡�

2Ci↵s(log �E �Bi)2

✓
1� e

�2↵s
⇡

Ci
� log

zcut
�E

“
log 1

�E
+Bi

”◆
,

(5.7)

for �E < zcut. At this order, the cumulative distribution is constant for �E > zcut.
The expression in Eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in ↵s, we find

⌃energy-drop(�E) = 1� ↵s

⇡

Ci

�
log2 zcut

�E
+O

 ✓
↵s

�

◆2
!

. (5.8)
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On the other hand, Eq. (5.2) has a smooth � ! 0 limit, and therefore is still calculable
(despite being IRC unsafe). Specifically, we are calculating the �E distribution at a fixed
groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC unsafe)
singularity at Rg ! 0, but this is regulated by the Sudakov factor in the Rg distribution.
This property was referred to as “Sudakov safety” in Ref. [105]. As we will now show, the
way in which IRC unsafety but Sudakov safety manifests itself for �E is rather peculiar.

The behavior of �E for � = 0 is easiest to study by computing the cumulative distribution
of the energy drop at fixed coupling. We will also take the Laplace conjugate parameter ⌫ !
1 to suppress multiple emissions e↵ects. This limit removes the inverse Laplace transform
and turns the exponential factor in Eq. (5.4) into the constraint that z > �E . We emphasize
that the ⌫ ! 1 limit is only taken to simplify the following discussion; the fixed-coupling
energy loss distribution with the full multiple emissions e↵ect exhibits the same properties.

At fixed-coupling, the cumulative distribution of the groomed jet radius is

⌃radius(Rg)
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where we have ignored terms suppressed by positive powers of zcut and �E . The cumulative
distribution of the energy drop at fixed groomed jet radius is

e⌃(Rg,�E) f.c.= exp
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Plugging these expressions into Eq. (5.2) in the ⌫ ! 1 limit, we find the cumulative distri-
bution of the groomed energy drop to be

⌃energy-drop(�E) =
log zcut �Bi
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+
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(5.7)

for �E < zcut. At this order, the cumulative distribution is constant for �E > zcut.
The expression in Eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in ↵s, we find

⌃energy-drop(�E) = 1� ↵s

⇡

Ci

�
log2 zcut

�E
+O
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↵s
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. (5.8)
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• Compute to all orders and then take β=0

• finite result which does not depend on αs (at fixed coupling)

Thus, the expansion in powers of the strong coupling is actually an expansion in ↵s/�, which
diverges order-by-order in perturbation theory for � ! 0. Thus, as advertised, the energy
drop distribution is not IRC safe for � = 0. However, the � ! 0 limit of Eq. (5.7) can be
taken before expanding in ↵s. The � ! 0 limit yields the simple and surprising result

⌃energy-drop(�E)�=0 =
log zcut �Bi

log �E �Bi
, (5.9)

which is completely independent of ↵s! So while the strong coupling constant ↵s was necessary
to calculate �E , the leading behavior is independent of the value of ↵s.

We can attribute this behavior to the fact that �E is a Sudakov safe observable for � = 0.
The singular region of phase space at Rg ! 0 is exponentially suppressed by the Sudakov
factor in ⌃radius(Rg). This exponential suppression balances the exponential increase in the
number of groomed emissions in such a way that �E is independent of ↵s. In fact, �E is
independent of the total color of the jet at fixed coupling, and only depends on the flavor
of the jet through the subleading terms in the splitting functions Bi. When the running
coupling is included, we will see that the dominant contribution to the �E distribution is still
independent of ↵s, with only weak dependence controlled by the QCD �-function.

5.3 Non-Global Logarithms

The ungroomed jet energy E0 is clearly a↵ected by non-global contributions, since emissions
outside of the jet can radiate energy into the jet. Because the soft drop procedure removes
soft wide-angle radiation, we expect that the groomed jet energy Eg should have no non-
global contributions. In principle, we could calculate the Eg distribution directly to show the
absence of non-global logarithms. In practice, though, it is hard to interpret the meaning of
Eg without invoking some reference energy scale. Here, we are using E0 as a reference, which
is not ideal since E0 has non-global contributions. That said, we will find that the E0 and �E

distributions have exactly the same non-global logarithms, implying that the Eg distribution
is wholly absent of them.

Analogous to Sec. 3.4, we can do a simple calculation of the non-global contribution to
�E . At lowest order for a narrow jet of radius R0, the non-global logarithms can be computed
from

1
�0

d�NG

d�E
= 4CF CA

⇣↵s

2⇡

⌘2
Z

dz1
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dz2
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1 � ✓2

2
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2

R�
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� z2
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�(�E � z2)

=
2
3
⇡2CF CA

⇣↵s

2⇡

⌘2 log 1
�E

�E
+O

 
R2

0,
�2/�

E

z
2/�
cut

!
. (5.10)

This shows that non-global logarithms are not power-suppressed for the energy loss distribu-
tion regardless of �. Moreover, the coe�cient of the non-global logarithms are the same for
the ungroomed distribution (� !1) as for the groomed distribution (finite �). This implies
that the groomed jet energy Eg cannot contain any non-global logarithms.
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Sudakov Safety
Larkoski and Thaler (2013)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.0001  0.001  0.01  0.1  1

∆
E
/σ

 d
σ

/d
∆

E

∆E

√s=14 TeV, Pythia 8(parton), anti-kt(R=1)

β=0

pt>200 GeV
pt>1 TeV
pt>3 TeV

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10-4 10-3 10-2 10-1

∆
E
/σ

 d
σ

/d
∆

E

∆E

R=1,pt>3 TeV, zcut=0.1

Pythia, αs=0.1
Pythia, αs=0.2
Pythia, αs=0.3
analytic no ME
analytic with ME

19



Conclusions

• Jet substructure is playing an important role in LHC 
   phenomenology (searches and measurements)

• The use of these techniques will further increase with Run II

• In the last two years we’ve begun to reach a deeper (analytic) 
   understanding of groomers and taggers

• Soft drop is an example of this knowledge put at work 

Thank you !
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