

Alessandro Broggio

work in progress with Andrew Papanastasiou (DESY) and Adrian Signer (PSI)

LoopFest, 19 June 2014

Outline

- Introduction: why fully differential predictions are important?
- What is known: SCET resummation framework for stable tops, PIM and IPI kinematics
- Include decay and implement known higher order corrections in a parton level MC
- Results: distributions for the LHC at 8 TeV

Why improved differential predictions?

LHC experiments:

- measure of differential cross sections to test theory predictions
- top quarks are not directly detected, but reconstructed from their decay products
- top decays nearly exclusively
$t \rightarrow W^{+} b_{f}$
- realistic cuts on leptons-jets-met in the final state

State of the art predictions for top-pair production at hadron colliders:
Stable tops (inclusive):

- NNLO+NNLL ($\sigma_{\text {tot }}$) [Bärnreuther, Czakon, Fiedler, Mitov '12,' 13]

Unstable tops (exclusive):
- NLO: On-shell top-pair production with decay [Bernreuther et al., '04, Melnikov \& Schulze, '09, Ellis \& Campbell 'I2]

Is it possible to improve fixed-order NLO predictions for unstable top-pair production?

Improvement at the production level

- It is possible to compute higher order contributions in perturbation theory using the knowledge of lower orders by solving RGEs
- These terms capture an important part of the higher order correction

Stable top-pair: approx-NNLO predictions (from NNLL resummation formula) for the $M_{t \bar{t}}, p_{T}, y$ were obtained by [Ahrens, Ferroglia, Neubert, Pecjak, Yang 'IO, 'II] in PIM and IPI kinematics (using SCET methods)

Idea: "improve" the weights of the events (in parton-level MC) by including approx-NNLO corrections for the production subprocess and use these to look at other distributions!

- adapt and include these corrections in a fully differential framework
- inclusion of top decay in NWA

PIM \& IPI kinematics

The Pair Invariant Mass kinematics (PIM)

$$
N_{1}\left(P_{1}\right)+N_{2}\left(P_{2}\right) \rightarrow(t+\bar{t})\left(p_{t}+p_{\bar{t}}\right)+X\left(p_{X}\right)
$$

$$
M_{t \bar{t}}=\left(p_{t}+p_{\bar{t}}\right)^{2}
$$

to study the invariant mass distribution

$$
\begin{gathered}
\frac{d^{2} \sigma}{d M d \cos \theta} \\
(1-z)=1-\frac{M_{t \bar{t}}^{2}}{s} \rightarrow 0
\end{gathered}
$$

Soft gluon Energy $\quad E_{s}=\frac{(1-z) M_{t \bar{t}}}{2 \sqrt{z}}$

One Particle Inclusive kinematics (IPI)

$$
\begin{aligned}
N_{1}\left(P_{1}\right)+N_{2}\left(P_{2}\right) & \rightarrow t\left(p_{t}\right)+(\bar{t}+X)\left(p_{\bar{t}}+p_{X}\right) \\
s_{4} & =\left(p_{\bar{t}}+p_{X}\right)^{2}-m_{t}^{2}
\end{aligned}
$$

to study the transverse momentum and rapidity distributions

$$
\underbrace{\frac{d^{2} \sigma}{d p_{T} d y}}_{s_{4} \rightarrow 0}
$$

Soft gluon Energy $\quad E_{s}=\frac{s_{4}}{\left(2 \sqrt{m_{t}^{2}+s_{4}}\right)}$

PIM \& IPI factorization

Factorization of the cross sections studied in these limits by QCD: [Kidonakis, Laenen, Moch, Sterman,...], SCET: [Ahrens, Ferroglia, Neubert, Pecjak, Yang, 'IO, 'II I]
PIM

$$
\begin{aligned}
& \frac{d^{2} \hat{\sigma}}{d M d \cos \theta}=\frac{\pi \beta_{t}}{s M} \sum_{i, j} C_{\mathrm{PIM}, i j}\left(z, M, m_{t}, \cos \theta, \mu_{f}\right) \\
& C_{\mathrm{PIM}, i j}\left(z, M, m_{t}, \cos \theta, \mu_{f}\right)=\operatorname{Tr}[\underbrace{\mathrm{H}_{i j}\left(M, m_{t}, \cos \theta, \mu_{f}\right)}_{i j} \frac{\mathrm{~S}_{\mathrm{PIM}, i j}\left(\sqrt{s}(1-z), M, m_{t}, \cos \theta, \mu_{f}\right)}{\hat{\uparrow}}] \\
& P_{m}(z)=\left[\frac{\ln ^{m}(1-z)}{1-z}\right]_{+} ; \quad m=0, \ldots, 2 n-1
\end{aligned}
$$

IPI

$$
\begin{gathered}
\frac{d^{2} \hat{\sigma}}{d p_{T} d y}=\frac{2 \pi p_{T}}{s} \sum_{i, j} C_{1 \mathrm{PI}, i j}\left(s_{4}, s, t_{1}, u_{1}, m_{t}, \mu_{f}\right) \\
C_{1 \mathrm{PI}, i j}\left(s_{4}, s, t_{1}, u_{1}, m_{t}, \mu_{f}\right)=\operatorname{Tr} \underbrace{\mathbf{H}_{i j}\left(s, t_{1}, u_{1}, m_{t}, \mu_{f}\right)} \frac{\mathbf{S}_{1 \mathrm{PI}, i j}\left(s_{4}, s, t_{1}, u_{1}, m_{t}, \mu_{f}\right)}{} \\
\bar{P}_{m}\left(s_{4}\right)=\left[\frac{\ln ^{m}\left(s_{4} / m_{t}^{2}\right)}{s_{4}}\right]_{+}=\frac{1}{m_{t}^{2}} P_{m}\left(1-\frac{s_{4}}{m_{t}^{2}}\right) ; \quad m=0, \ldots, 2 n-1
\end{gathered}
$$

- \mathbf{H} and \mathbf{S} satisfy RG equations
- By knowing \mathbf{H} and \mathbf{S} at NLO in both kinematics, we can solve explicitly the RG equations for \mathbf{H} and \mathbf{S} at NNLO

Adding the top decay

- On-shell top-quarks decayed in NWA
- Corrections to the decay are included only at fixed order (LO/NLO)

Factorization of amplitudes:

$$
\mathcal{M}_{i j}^{\{\lambda\}}=\sum_{\lambda_{t}, \lambda_{\bar{t}}} \mathcal{M}^{P}\left(i j \rightarrow t^{\lambda_{t}} \bar{t}^{\lambda_{\bar{t}}}\right) \mathcal{M}^{D}\left(t^{\lambda_{t}} \rightarrow W^{+} b\right) \mathcal{M}^{D}\left(\bar{t}^{\lambda_{\bar{t}}} \rightarrow W^{-} \bar{b}\right)
$$

- Glue together production/decay using spinor-helicity methods production amps: [Badger, Sattler,Yundin, 'II]
- Spin correlations between production and decay included
- Decompose amplitudes in color basis to construct hard functions

$$
\mathcal{M}_{i j,\{a\}}^{\{\lambda\}}\left(p_{1}, \ldots p_{8}, m_{t}, \mu_{f}\right)=\sum_{I} \mathcal{M}_{i j, I}^{\{\lambda\}}\left(p_{1}, \ldots p_{8}, m_{t}, \mu_{f}\right)\left(c_{I}^{i j}\right)_{\{a\}}
$$

- W-bosons also decayed to leptons

Approximate NNLO

- Hard functions (NEW): computed I-loop modified hard functions where the tops are decayed (in NWA)

$$
\begin{aligned}
& H_{I J}^{(0)}=\frac{1}{4} \sum_{\{\lambda\}}\left(\mathcal{M}_{I}^{\mathrm{ren}(0)\{\lambda\}}\right)^{*}\left(\mathcal{M}_{J}^{\mathrm{ren}(0)\{\lambda\}}\right), \\
& H_{I J}^{(1)}=\frac{1}{4} \sum_{\{\lambda\}}\left[\left(\mathcal{M}_{I}^{\mathrm{ren}(0)\{\lambda\}}\right)^{*}\left(\mathcal{M}_{J}^{\mathrm{ren}(1)\{\lambda\}}\right)+\left(\mathcal{M}_{I}^{\mathrm{ren}(1)\{\lambda\}}\right)^{*}\left(\mathcal{M}_{J}^{\mathrm{ren}(0)\{\lambda\}}\right)\right]
\end{aligned}
$$

- Soft functions: I-loop soft functions in PIM and IPI do not change (Note: in NWA no soft-gluon connections between production and decay) [Ahrens, Ferroglia, Neubert, Pecjak, Yang,'IO, 'II]
- RG-equations:

$$
\begin{aligned}
& \frac{d}{d \ln \mu} \boldsymbol{H}=\boldsymbol{\Gamma}_{H} \boldsymbol{H}+\boldsymbol{H} \boldsymbol{\Gamma}_{H}^{\dagger} \\
& \frac{d}{d \ln \mu} \tilde{\mathbf{s}}_{\{\mathrm{PIM}, 1 \mathrm{PI}\}}=\boldsymbol{\Gamma}_{s\{\mathrm{PIM}, 1 \mathrm{PI}\}} \tilde{\mathbf{s}}_{\{\mathrm{PIM}, 1 \mathrm{PI}\}}+\tilde{\mathbf{s}}_{\{\mathrm{PIM}, 1 \mathrm{PI}\}} \boldsymbol{\Gamma}_{s\{\mathrm{PIM}, 1 \mathrm{PI}\}}
\end{aligned}
$$

- use two loop anomalous dimensions for massive partons computed by [Ferroglia, Neubert, Pecjak, Yang 09']
- obtain approximate NNLO contributions by re-expanding resummation formula at fixed-order
- obtain the correct coefficients of the plus-distributions terms

$$
\begin{aligned}
& C_{\mathrm{PIM}}^{(2)}\left(z, p_{1}, \ldots, p_{8}, m_{t}, \mu_{f}\right)=\sum_{m=0}^{3}{\underset{\mathrm{PIM}, m}{(2)}\left(z, p_{1}, \ldots, p_{8}, m_{t}, \mu_{f}\right) P_{m}(z), ~(z)}^{D_{2}} \\
& +Q_{\mathrm{PIM}, 0}^{(2)}\left(p_{1}, \ldots, p_{8}, m_{t}, \mu_{f}\right) \delta(1-z)+R_{\mathrm{PIM}}^{(2)}\left(z, m_{t}, \mu_{f}\right)
\end{aligned}
$$

Monte Carlo Implementation

$$
C_{i j}=\alpha_{s}^{2}\left[C_{i j}^{(0)}+\frac{\alpha_{s}}{4 \pi} C_{i j}^{(1)}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{i j}^{(2)}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
$$

Stable-tops:

$$
C_{\mathrm{PIM}}^{(2)}\left(z, M, m_{t}, \cos \theta, \mu_{f}\right)=\sum_{m=0}^{3} \overbrace{\mathrm{PIM}, m}^{(2)}\left(z, M, m_{t}, \cos \theta, \mu_{f}\right)) P m(z)
$$

$$
+Q_{\mathrm{PIM}, 0}^{(2)}\left(M, m_{t}, \cos \theta, \mu_{f}\right) \delta(1-z)+R_{\mathrm{PIM}}^{(2)}
$$

Restore explicit dependence on outgoing particle momenta:

Unstable-tops: $\quad C_{\mathrm{PIM}}^{(2)}\left(z, p_{1}, \ldots, p_{8}, m_{t}, \mu_{f}\right)=\sum_{m=0}^{3} D_{\mathrm{PIM}, m}^{(2)}\left(z, p_{1}, \ldots, p_{8}, m_{t}, \mu_{f}\right) P_{m}(z)$

$$
+Q_{\mathrm{PIM}, 0}^{(2)}\left(p_{1}, \ldots, p_{8}, m_{t}, \mu_{f}\right) \delta(1-z)+R_{\mathrm{PIM}}^{(2)}\left(z, m_{t}, \mu_{f}\right)
$$

- Monte Carlo phase-space integrator:
- generate phase-space (momentum configurations) $\left\{p_{i}\right\}$
| we evaluate approximate contributions using momenta $\left\{p_{i}\right\} \rightarrow$ weights
- bin weights according to observables constructed from final state momenta

Improved predictions

Approx-NNLO for the production subprocess and NLO for decay

Validation procedure: nLO vs NLO

Surprisingly PIM seems to perform better than IPI in both cases!

- Reconstructed invariant mass and pT distributions
- Production corrections only (LO decay)
- Validation of the approximation
- Cuts:

$$
\begin{array}{rll}
p_{T}\left(J_{b}\right)>15 \mathrm{GeV} & p_{T}\left(J_{\bar{b}}\right)>15 \mathrm{GeV} & \\
E_{T}\left(e^{+}\right)>15 \mathrm{GeV} & E_{T}\left(e^{-}\right)>15 \mathrm{GeV} & E_{T}>20 \mathrm{GeV}
\end{array}
$$

Validation procedure: nLO vs NLO

Uncertainty estimate: take envelope of scale variation of $\{$ PIM, IPI\} for every distribution

Total cross section

- Complete agreement with [Ahrens et al.] for the no-cuts case (consistency-check)
- Compare approx-NNLO (nNLO) corrections with exact NNLO [Top++: Bärnreuther, Czakon, Fiedler, Mitov '12,'।3]
-LHC 8 and 14 TeV , MSTW08 NLO PDFs $\mu=\left\{m_{t} / 2, m_{t}, 2 m_{t}\right\}$

- Incomplete overlap of uncertainty bands at the LHC
- Approximate-NNLO (nNLO) corrections not perfect, but decent approximation (at the Tevatron the situation is a bit worse)
- The approximation can be improved by including 2-loop hard and soft functions

Distributions with final state cuts

- Use MSTW2008 NLO/NNLO PDFs
- Cuts:

$$
\begin{array}{rll}
p_{T}\left(J_{b}\right)>15 \mathrm{GeV} & p_{T}\left(J_{\bar{b}}\right)>15 \mathrm{GeV} & \\
E_{T}\left(e^{+}\right)>15 \mathrm{GeV} & E_{T}\left(e^{-}\right)>15 \mathrm{GeV} & E_{T}>20 \mathrm{GeV}
\end{array}
$$

- Top decay included in NWA at NLO

- Uncertainty bands of nNLO: scale variation+kinematics (envelope of PIM and IPI)
- Good perturbative behaviour, reduction of theoretical uncertainty

Distributions with final state cuts

Conclusions \& Outlook

- We have adapted (including decay) and implemented known PIM and IPI n(N)LO contributions in a fully-differential code, including top decays (at NLO) and spincorrelations
- We studied fully differential distributions
- Reduction of theoretical uncertainty (scale + kinematics)

Formally we have not proved anything, but it seems to work

- Compute charge asymmetry at the LHC
- Adapt (including decay) and implement virtual + soft approximation [Ferroglia, Pecjak, Yang' 13; Ferroglia, Marzani, Pecjak, Yang ‘I3]
- Mismatch in production/decay corrections
- Include NNLO decay corrections [Gao, Li, Zhu 'I2; Brucherseifer, Caola, Melnikov ‘13]

Differential checks

- Full agreement at differential level with [Ahrens et al.]
- Good perturbative behaviour
- Final state patrons clustered into jets
- Tops reconstructed via b-jet and lepton momenta
- No cuts on final state applied (to recover total cs)
- Tops decays only at LO

Approximate NNLO formulas

- H and S satisfy RG equations of the form:

$$
\begin{aligned}
& \frac{d}{d \ln \mu} \boldsymbol{H}=\boldsymbol{\Gamma}_{H} \boldsymbol{H}+\boldsymbol{H} \boldsymbol{\Gamma}_{H}^{\dagger} \\
& \frac{d}{d \ln \mu} \tilde{\mathbf{s}}_{\{\mathrm{PIM}, 1 \mathrm{PI}\}}=\boldsymbol{\Gamma}_{s\{\mathrm{PIM}, 1 \mathrm{PI}\}}^{\dagger} \tilde{\mathbf{s}}_{\{\mathrm{PIM}, 1 \mathrm{PI}\}}+\tilde{\mathbf{s}}_{\{\mathrm{PIM}, 1 \mathrm{PI}\}} \boldsymbol{\Gamma}_{s\{\mathrm{PIM}, 1 \mathrm{PI}\}}
\end{aligned}
$$

- The two loop anomalous dimensions including massive partons were computed by [Ferroglia, Neubert, Pecjak, Yang 09']
- The large logarithms could be resummed to all-orders by solving the RG equations for \mathbf{H} and S , but here we follow a different possibility. The resummed formulas can be re-expanded to obtain fixed-oder formulas.
- The perturbative expansion of the hard-scattering kernels reads

$$
A=\left(\begin{array}{ccc}
1 & & \\
\frac{\alpha L^{2}}{} & \alpha \mathrm{~L} & \alpha \\
\frac{\alpha^{2} \mathrm{~L}^{4}}{} \alpha^{2} \mathrm{~L}^{3} & \alpha^{2} \mathrm{~L}^{2} & \alpha^{2} \mathrm{~L} \\
\alpha^{3} \mathrm{~L}^{6} & & \alpha^{2} \\
\vdots & \ldots
\end{array}\right)
$$

[Chiu, Kelley, Manohar, 08’]
Logarithmic structure of the scattering amplitude for

Sudakov problems

- By knowing the analytical expressions for H and S at NLO in both kinematics, we can solve explicitly the RG equations for H and S at NNLO

Approximate NNLO formulas

$$
C_{i j}=\alpha_{s}^{2}\left[C_{i j}^{(0)}+\frac{\alpha_{s}}{4 \pi} C_{i j}^{(1)}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{i j}^{(2)}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right],
$$

where for PIM

$$
\begin{aligned}
C_{\mathrm{PIM}}^{(1)} & =D_{1}^{(1, \mathrm{PIM})}\left[\frac{\ln (1-z)}{1-z}\right]_{+}+D_{0}^{(1, \mathrm{PIM})}\left[\frac{1}{1-z}\right]_{+}+C_{0}^{(1, \mathrm{PIM})} \delta(1-z)+R^{(1, \mathrm{PIM})}(z) \\
C_{\mathrm{PIM}}^{(2)} & =D_{3}^{(2, \mathrm{PIM})}\left[\frac{\ln ^{3}(1-z)}{1-z}\right]_{+}+D_{2}^{(2, \mathrm{PIM})}\left[\frac{\ln ^{2}(1-z)}{1-z}\right]_{+}+D_{1}^{(2, \mathrm{PIM})}\left[\frac{\ln (1-z)}{1-z}\right]_{+} \\
& +D_{0}^{(2, \mathrm{PIM})}\left[\frac{1}{1-z}\right]_{+}+C_{0}^{(2, \mathrm{PIM})} \delta(1-z)+R^{(2, \mathrm{PIM})}(z)
\end{aligned}
$$

This would require a complete 2 loop calculation

Validation procedure: nLO vs NLO

- Comparison of uncertainty bands between PIM-IPI envelope and full NLO for gg-channel only
- Take the envelope of PIM and IPI predictions for every distribution

LHC 8 TeV setup

Collider: LHC 8 TeV
Use MSTW2008 NLO/NNLO PDFs

$$
\begin{array}{ll}
m_{t}^{\text {pole }}=173.1 \mathrm{GeV} & M_{W}=80.4 \mathrm{GeV} \quad \mu_{F}=\mu_{R} \in[0.5,2.0] * m_{t} \\
\Gamma_{t}^{\mathrm{NLO}}\left(m_{t}\right)=1.373 \mathrm{GeV} & \Gamma_{W}=2.140 \mathrm{GeV}
\end{array}
$$

Cuts:

$$
\begin{array}{ll}
p_{T}\left(J_{b}\right), p_{T}\left(J_{\bar{b}}\right)>15 \mathrm{GeV} & \mathbb{E}_{T}>20 \mathrm{GeV} \\
p_{T}\left(I^{+}\right), p_{T}\left(I^{-}\right)>15 \mathrm{GeV} & M_{t \bar{t}}>350 \mathrm{GeV}
\end{array}
$$

$$
M_{t \bar{t}}=M_{t \bar{t}}^{\mathrm{rec} .}=M\left(\left(W^{+}, J_{b}\right),\left(W^{-}, J_{\bar{b}}\right)\right)
$$

- Top decay included in NWA at NLO

Anomalous dimensions for top production

$$
\begin{aligned}
\Gamma_{H}^{\mathrm{PIM}}\left(M, \cos \theta, \alpha_{s}\right) & =\Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right)\left(\ln \frac{M^{2}}{\mu^{2}}-i \pi\right)+\gamma^{h}\left(M, \cos \theta, \alpha_{s}\right) \\
\Gamma_{H}^{1 \mathrm{PI}}\left(s^{\prime}, t_{1}^{\prime}, u_{1}^{\prime}, \alpha_{s}\right) & =\Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right)\left(\ln \frac{s^{\prime}}{\mu^{2}}-i \pi\right)+\gamma^{h}\left(s^{\prime}, t_{1}^{\prime}, u_{1}^{\prime}, \alpha_{s}\right)
\end{aligned}
$$

$$
\begin{gathered}
\tilde{\Gamma}_{s \mathrm{PIM}}=-\left[\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{M^{2}}{\mu^{2}}+2 \gamma^{\phi}\left(\alpha_{s}\right)\right] \mathbf{1}-\gamma^{h}\left(M, \cos \theta, \alpha_{s}\right) \\
\tilde{\Gamma}_{s 1 \mathrm{PI}}=-\left[\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{s^{\prime}}{\mu^{2}}+2 \gamma^{\phi}\left(\alpha_{s}\right)+\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \log \frac{s^{\prime} m_{\tilde{t}_{1}}^{2}}{t_{1}^{\prime} u_{1}^{\prime}}\right] 1-\gamma^{h}\left(s^{\prime}, t_{1}^{\prime}, u_{1}^{\prime}, m_{\tilde{t}_{1}}, \alpha_{s}\right)
\end{gathered}
$$

NNLO solution of the RGE for the Soft function

[arXiv:I I 03.0550]

$$
\tilde{s}\left(L, \alpha_{s}(\mu)\right)=1+\frac{\alpha_{s}(\mu)}{4 \pi} \sum_{n=0}^{2} s^{(1, n)} L^{n}+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2} \sum_{n=0}^{4} s^{(2, n)} L^{n}+\ldots
$$

$$
\begin{aligned}
\tilde{s}\left(L, \alpha_{s}(\mu)\right)=1+\frac{\alpha_{s}(\mu)}{4 \pi} & {\left[\frac{\Gamma_{0}}{2} L^{2}+L \gamma_{0}^{s}+s^{(1,0)}\right] } \\
+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2}[& {\left[\frac{\Gamma_{0}^{2}}{8} L^{4}+\left(-\frac{\beta_{0} \Gamma_{0}}{6}+\frac{\Gamma_{0} \gamma_{0}^{s}}{2}\right) L^{3}+\frac{1}{2}\left(\Gamma_{1}-\beta_{0} \gamma_{0}^{s}+\left(\gamma_{0}^{s}\right)^{2}+\Gamma_{0} s^{(1,0)}\right) L^{2}\right.} \\
& \left.+\left(\gamma_{1}^{s}-\beta_{0} s^{(1,0)}+\gamma_{0}^{s} s^{(1,0)}\right) L+s^{(2,0)}\right]
\end{aligned}
$$

Approximation schemes

[Becher, Neubert, Xu, 07’]

RG-impr. PT	Log. approx.	Accuracy $\sim \alpha_{s}^{n} L^{k}$	$\Gamma_{\text {cusp }}$	$\gamma^{V}, \gamma^{\phi}$	$C_{V}, \widetilde{s}_{\text {DY }}$
-	LL	$k=2 n$	1-loop	tree-level	tree-level
LO	NLL	$2 n-1 \leq k \leq 2 n$	2-loop	1-loop	tree-level
NLO	NNLL	$2 n-3 \leq k \leq 2 n$	3-loop	2-loop	1-loop
NNLO	NNNLL	$2 n-5 \leq k \leq 2 n$	4-loop	3-loop	2-loop

For Sudakov problems the counting of the logarithms is done in the exponent!

The large logarithms count as $1 / \alpha_{s}$, it is always possible to rewrite a log of a ratio of two scales as

$$
\ln \frac{\nu}{\mu^{\prime}}=\int_{\alpha_{s}\left(\mu^{\prime}\right)}^{\alpha_{s}(\nu)} \frac{d \alpha}{\beta(\alpha)} \quad \beta\left(\alpha_{s}\right)=-2 \alpha_{s}\left[\beta_{0}\left(\frac{\alpha_{s}}{4 \pi}\right)+\beta_{1}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
$$

