The matching coefficient of the vector current and the decay $\Upsilon(1 S) \rightarrow \ell$

Peter Marquard

DESY
in collaboration with
J. Piclum, D. Seidel and M. Steinhauser PRD 89 (2014) 034027

+ M. Beneke, Y. Kiyo, A. Penin, PRL 112 (2014) 151801

Loopfest, New York, 2014

Outline

(9) Matching Coefficient of the Vector Current
(2) Application: $\Gamma(\Upsilon(1 S) \rightarrow \ell \ell)$

Outline

(9) Matching Coefficient of the Vector Current
(2) Application: $\Gamma(\Upsilon(1 S) \rightarrow \ell \ell)$

Introduction

Physics of bound states of heavy particles and threshold phenomena best described within an effective field theory - Non-Relativistic QCD (NRQCD) and potential Non-Relativistic QCD (pNRQCD)

Prominent applications are

- production of $t \bar{t}$ pairs at threshold at a future linear collider
- decays of $b \bar{b}$ bound states
- $b \bar{b}$ sum rules
- positronium spectra

Matching Procedure

Chain of effective field theories: QCD \rightarrow NRQCD $\rightarrow \mathrm{p}$ (otential)NRQCD

Matching Procedure

Chain of effective field theories: QCD \rightarrow NRQCD $\rightarrow \mathrm{p}$ (otential)NRQCD

QCD vector current
$j_{v}^{\mu}=\bar{Q} \gamma^{\mu} Q$

NRQCD vector current

$$
\tilde{j}_{v}^{k}=\phi^{\dagger} \sigma^{k} \chi
$$

$$
j_{v}^{k}=c_{v} \tilde{j}_{v}^{k}+\frac{d_{v}}{6 M^{2}} \phi^{\dagger} \sigma^{k} D^{2} \chi+\cdots
$$

Matching Procedure

Chain of effective field theories: QCD \rightarrow NRQCD $\rightarrow \mathrm{p}$ (otential)NRQCD

$$
j_{v}^{k}=c_{v} \tilde{j}_{v}^{k}+\mathcal{O}\left(\frac{1}{M^{2}}\right)
$$

c_{V} can be extracted by calculating vertex corrections involving j_{v} and \tilde{j}_{V}

$$
Z_{2} \Gamma_{v}=c_{v} \tilde{Z}_{2} \tilde{Z}_{v}^{-1} \tilde{\Gamma}_{v}+\cdots
$$

Details

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

$$
Z_{2} \Gamma_{v}=c_{v} \tilde{Z}_{2} \tilde{Z}_{v}^{-1} \tilde{\Gamma}_{v}+\cdots
$$

Details

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

$$
\begin{aligned}
& Z_{2} \Gamma_{v}=c_{v} \tilde{Z}_{2} \tilde{Z}_{v}^{-1} \tilde{\Gamma}_{v}+\cdots \\
& \uparrow
\end{aligned}
$$

wave-function renormalization (full theory)

Details

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

$$
Z_{2} \Gamma_{v}=c_{v} \tilde{Z}_{2} \tilde{Z}_{v}^{-1} \tilde{\Gamma}_{v}+\cdots
$$

wave-function renormalization (full theory) \checkmark
wave-function renormalization
(effective theory) $\tilde{Z}_{2}=1 \checkmark$

Details

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

$$
Z_{2} \Gamma_{v}=c_{v} \tilde{Z}_{2} \tilde{Z}_{v}^{-1} \tilde{\Gamma}_{v}+\cdots
$$

wave-function renormalization (full theory)

wave-function renormalization (effective theory) $\tilde{Z}_{2}=1 \checkmark$
renormalization of the vector current (effective theory) \checkmark

Details

full and effective theory contain the same soft, ultra-soft and potential contributions \Rightarrow sufficient to calculate vertex functions at threshold

renormalization of the vector current (effective theory) \checkmark

Setup of the Calculation

- Feynman diagrams generated using QGRAF INoguira]
- mapped onto 78 topologies using 22E/EXP [Harander,Seidensiticker,Steinhauser]
- Feynman integrals reduced to master integrals with CRUSHER [PM,Seiden
- master integrals in different topologies have to be identified
- $\mathcal{O}(100)$ master integrals calculated analytically/numerically using various techniques, e.g. sector decomposition implemented in FIESTA [smiroov]
- numerical errors added in quadrature

Results

$$
\begin{aligned}
c_{V} \approx & 1-2.667 \frac{\alpha_{s}^{\left(n_{l}\right)}}{\pi}+\left(\frac{\alpha_{s}^{\left(n_{l}\right)}}{\pi}\right)^{2}\left[-44.551+0.407 n_{l}\right] \\
& +\left(\frac{\alpha_{s}^{\left(n_{l}\right)}}{\pi}\right)^{3}\left[-2091(2)+120.66(0.01) n_{l}-0.823 n_{l}^{2}\right] \\
& + \text { singlet terms }
\end{aligned}
$$

- large NNNLO correction
- but, on its own not a physical quantity
- preliminary results confirm that singlet terms are small

Checks

- Renormalization constant \tilde{Z}_{v} of the NRQCD current can be reproduced
- \tilde{Z}_{v} analytically known, $1 / \epsilon$ part numerically small
- agreement within the error estimate at the percent level

Checks

- Renormalization constant \tilde{Z}_{v} of the NRQCD current can be reproduced
- \tilde{Z}_{v} analytically known, $1 / \epsilon$ part numerically small
- agreement within the error estimate at the percent level
- Gauge independence: terms linear in ξ vanish

Checks

- Renormalization constant \tilde{Z}_{v} of the NRQCD current can be reproduced
- \tilde{Z}_{v} analytically known, $1 / \epsilon$ part numerically small
- agreement within the error estimate at the percent level
- Gauge independence: terms linear in ξ vanish
- Change basis of master integrals and compare

Checks

- Renormalization constant \tilde{Z}_{v} of the NRQCD current can be reproduced
- \tilde{Z}_{v} analytically known, $1 / \epsilon$ part numerically small
- agreement within the error estimate at the percent level
- Gauge independence: terms linear in ξ vanish
- Change basis of master integrals and compare

	default basis	alternative basis
$C_{\text {FFF }}$	$36.55(0.11)$	$36.61(2.93)$
$c_{\text {FFA }}$	$-188.10(0.17)$	$-188.04(2.91)$
$c_{\text {FAA }}$	$-97.81(0.08)$	$-97.76(2.05)$
$c_{v}^{(3)}\left(n_{l}=4\right)$	$-1621.7(0.4)$	$-1621(23)$
$c_{v}^{(3)}\left(n_{l}=5\right)$	$-1508.4(0.4)$	$-1507(23)$

Outline

(9) Matching Coefficient of the Vector Current

(2) Application: $\Gamma(\Upsilon(1 S) \rightarrow \ell \ell)$

Framework

- Calculated in the framework of pNRQCD
- Master formula

$$
\begin{aligned}
& \Gamma\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right) \\
& \quad=\frac{4 \pi \alpha^{2}}{9 m_{b}^{2}}\left|\psi_{1}(0)\right|^{2} c_{V}\left[c_{V}-\frac{E_{1}}{m_{b}}\left(c_{V}+\frac{d_{V}}{3}\right)+\ldots\right]
\end{aligned}
$$

- Wave function ψ_{1} and binding energy E_{1} calculated in pNRQCD
[Beneke,Kiyo,Penin,Schuller]
- Matching coefficients c_{v} and d_{v} as discussed before
- First test of perturbative bound-state dynamics where all scales (hard, soft, ultrasoft) are present

Perturbative Corrections - Pole scheme

$$
\begin{aligned}
& \left.\Gamma\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)\right|_{\text {pole }} \\
& \begin{aligned}
= & \frac{2^{5} \alpha^{2} \alpha_{s}^{3} m_{b}}{3^{5}}\left[1+\alpha_{s}(-2.003+3.979 L)\right.
\end{aligned} \\
& \quad+\alpha_{s}^{2}\left(9.05-7.44 \ln \alpha_{s}-13.95 L+10.55 L^{2}\right)
\end{aligned} \begin{array}{r}
\quad+\alpha_{s}^{3}\left(-0.91+4.78_{a_{3}}+22.07_{b_{2} \epsilon}+30.22_{c_{f}}\right. \\
\quad-134.8(1)_{c_{g}}-14.33 \ln \alpha_{s}-17.36 \ln ^{2} \alpha_{s} \\
\left.\left.\quad+\left(62.08-49.32 \ln \alpha_{s}\right) L-55.08 L^{2}+23.33 L^{3}\right)+\mathcal{O}\left(\alpha_{s}^{4}\right)\right] \\
=\quad \frac{2^{5} \alpha^{2} \alpha_{s}^{3} m_{b}}{3^{5}}\left[1+1.166 \alpha_{s}+15.2 \alpha_{s}^{2}+\left(66.5+4.8_{a_{3}}\right.\right. \\
\left.\left.\quad+22.1_{b_{2} \epsilon}+30.2_{c_{f}}-134.8(1)_{c_{g}}\right) \alpha_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right]
\end{array} \quad \begin{array}{r}
\quad \frac{2^{5} \alpha^{2} \alpha_{s}^{3} m_{b}}{3^{5}}[1+0.28+0.88-0.16]=\left[1.04 \pm 0.04\left(\alpha_{s}\right)_{-0.15}^{+0.02}(\mu)\right] \mathrm{keV}
\end{array}
$$

Perturbative corrections - PS scheme

$$
\begin{aligned}
& \left.\Gamma\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)\right|_{\mathrm{PS}} \\
& =\left.\quad \Gamma\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)\right|_{\mathrm{pole}, m_{b} \rightarrow m_{b}^{\mathrm{Ps}}} \\
& \quad+\frac{2^{5} \alpha^{2} \alpha_{s}^{3} m_{b}^{\mathrm{PS}}}{3^{5}} \frac{\mu_{f}}{m_{b}^{\mathrm{PS}} \alpha_{s}}\left[0.42 \alpha_{s}^{2}+\alpha_{s}^{3}\left(-1.78+0.28 L_{f}+1.69 L\right)+\mathcal{O}\left(\alpha_{s}^{4}\right)\right] \\
& =\frac{2^{5} \alpha^{2} \alpha_{s}^{3} m_{b}^{\mathrm{PS}}}{3^{5}}\left[1+1.528 \alpha_{s}+16.3 \alpha_{s}^{2}+\left(74.7+4.8_{a_{3}}\right.\right. \\
& \left.\left.\quad+22.1_{b_{2} \epsilon}+30.2_{c_{t}}-134.8(1)_{c_{g}}\right) \alpha_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right] \\
& = \\
& \frac{2^{5} \alpha^{2} \alpha_{s}^{3} m_{b}^{\mathrm{PS}}}{3^{5}}[1+0.37+0.95-0.04]=\left[1.08 \pm 0.05\left(\alpha_{s}\right)_{-0.20}^{+0.01}(\mu)\right] \mathrm{keV}
\end{aligned}
$$

Results - μ dependence

- NNNLO contribution of moderate size
- improved scale dependence
- no apparent convergence below $\mu \lesssim 3 \mathrm{GeV}$
- choose $\mu \in[3,10] \mathrm{GeV}$

Results $-\alpha_{s}$ dependence

- $\Gamma\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)_{\mathrm{PS}}=$ $\left[1.08(5)_{-0.20}^{+0.01}\right] \mathrm{keV}$ $\mu \in[3,10] \mathrm{GeV}$
- $\Gamma\left(\Upsilon(1 S) \rightarrow \ell^{+} \ell^{-}\right)_{\exp }=$ $1.340(18) \mathrm{keV}$
- theory prediction well below exp. value
- sizeable non-perturbative contribution?

Non-perturbative contribution

- Non-perturbative contribution from gluon condensate

$$
\delta_{\mathrm{np}}\left|\psi_{1}(0)\right|^{2}=\left|\psi_{1}^{\mathrm{LO}}(0)\right|^{2} \times 17.54 \pi^{2} K, \quad K=\frac{\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle}{m_{b}^{4}\left(\alpha_{s} C_{F}\right)^{6}}
$$

[Pineda; Voloshin]
With $\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle=0.012 \mathrm{GeV}^{4}$ and $\alpha_{s}(3.5 \mathrm{GeV})$
$\Rightarrow \delta_{\mathrm{np}} \Gamma_{\ell \ell}(\Upsilon(1 S))_{\text {pole }}=1.67 \mathrm{keV}$ and $\delta_{\mathrm{np}} \Gamma_{\ell \ell}(\Upsilon(1 S))_{\mathrm{pS}}=2.20 \mathrm{keV}$

Non-perturbative contribution

- Non-perturbative contribution from gluon condensate

$$
\delta_{\mathrm{np}}\left|\psi_{1}(0)\right|^{2}=\left|\psi_{1}^{\mathrm{LO}}(0)\right|^{2} \times 17.54 \pi^{2} K, \quad K=\frac{\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle}{m_{b}^{4}\left(\alpha_{s} C_{F}\right)^{6}}
$$

[Pineda; Voloshin]
With $\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle=0.012 \mathrm{GeV}^{4}$ and $\alpha_{s}(3.5 \mathrm{GeV})$
$\Rightarrow \delta_{\mathrm{np}} \Gamma_{\ell \ell}(\Upsilon(1 S))_{\text {pole }}=1.67 \mathrm{keV}$ and $\delta_{\mathrm{np}} \Gamma_{\ell \ell}(\Upsilon(1 S))_{\mathrm{pS}}=2.20 \mathrm{keV}$

- Obtain K by comparing with mass extraction

$$
\begin{gathered}
M_{\Upsilon(1 S)}=2 m_{b}+E_{1}^{\mathrm{p}}+\frac{624 \pi^{2}}{425} m_{b}\left(\alpha_{s} C_{F}\right)^{2} K \\
\delta M_{\Upsilon(1 S)}^{\mathrm{np}} \equiv M_{\Upsilon(1 S)}-\left(2 m_{b}^{\mathrm{PS}}+E_{1}^{\mathrm{p}, \mathrm{PS}}\right) \approx\left[125 \pm 16\left(\alpha_{s}\right) \pm 34\left(m_{b}\right)_{-25}^{+10}(\mu)\right] \mathrm{MeV} \\
\delta_{\mathrm{np}} \Gamma_{\ell \ell}(\Upsilon(1 S)) \\
=\frac{4 \alpha^{2} \alpha_{s}}{9} \frac{17.54 \times 425}{3744} \delta M_{\Upsilon(1 S)}^{\mathrm{np}} \\
\end{gathered} \begin{gathered}
\\
\end{gathered}
$$

Conclusions

- Calculated the matching coefficient for the vector curret between QCD and NRQCD at NNNLO
- Large NNNLO correction
- All building blocks are now available for a complete NNNLO description of bould state and threshold physics

Conclusions

- Calculated the matching coefficient for the vector curret between QCD and NRQCD at NNNLO
- Large NNNLO correction
- All building blocks are now available for a complete NNNLO description of bould state and threshold physics
- Application: decay of $\Upsilon(1 S)$ for top pair production see talk by M. Steinhauser
- Perturbative corrections well under control
- Non-perturbative corrections sizeable and difficult to quantize

