FACTORIZATION SIMPLIFIED

Loopfest XIII
 June 19, 2014

Matthew Schwartz

Harvard University
Based on arXiv:1306.6341 with Ilya Feige and arXiv:1403.6472 with Ilya Feige

Main result:

$$
\langle X| \mathcal{O}|0\rangle \cong \mathcal{C}\left(S_{i j}\right) \frac{\left\langle X_{1}\right| \phi^{\star} W_{1}|0\rangle}{\langle 0| Y_{1}^{\dagger} W_{1}|0\rangle} \cdots \frac{\left\langle X_{N}\right| W_{N}^{\dagger} \phi|0\rangle}{\langle 0| W_{N}^{\dagger} Y_{N}|0\rangle}\left\langle X_{s}\right| Y_{1}^{\dagger} \cdots Y_{N}|0\rangle
$$

- Two different amplitudes in QCD are equal at leading power in $\frac{p_{i} \cdot p_{j}}{Q^{2}}$
- We prove this rigorously to all orders in perturbation theory

$$
\mathcal{M}_{\{ \pm\}} \cong \sum_{I} \mathcal{C}_{I,\{ \pm\}}\left(S_{i j}\right)
$$

QCD:

$$
\begin{aligned}
\times \cdots & \frac{\left\langle X_{i}\right| \bar{\psi}_{i} W_{i}|0\rangle^{ \pm h_{i}}}{\operatorname{tr}\langle 0| Y_{i}^{\dagger} W_{i}|0\rangle} \cdots \frac{\left\langle X_{j}\right| A^{\mu} \mathcal{W}_{j}|0\rangle^{ \pm a_{j}}}{\operatorname{tr}\langle 0| \mathcal{Y}_{j}^{\dagger} \mathcal{W}_{j}|0\rangle} \cdots \frac{\left\langle X_{k}\right| W_{k}^{\dagger} \psi_{k}|0\rangle^{ \pm h_{k}}}{\operatorname{tr}\langle 0| W_{k}^{\dagger} Y_{k}|0\rangle} \cdots \\
& \times\left\langle X_{s}\right| \cdots\left(Y_{i}^{\dagger} T_{I}^{i}\right)^{h_{i} l_{i}} \cdots\left(\mathcal{Y}_{j}^{\dagger} T_{I}^{j}\right)^{l_{j-1} a_{j} l_{j+1}} \cdots\left(T_{I}^{k} Y_{k}\right)^{l_{k} h_{k}} \cdots|0\rangle
\end{aligned}
$$

Perturbative QCD

- Why is perturbative QCD useful at all?

Asymptotic freedom

- α_{s} is small at high energy
- Perturbation theory works

$$
\underbrace{\beta=\mu \frac{d}{d \mu} \alpha_{s}<0}
$$

Determined by
UV properties of QCD

Determined by IR properties of QCD

Why is proving factorization so hard?

1. Non-perturbative effects

- To show factorization up to $\frac{m_{P}}{Q}$ or $\frac{\Lambda_{\mathrm{QCD}}}{Q}$
- No access to non-perturbative scales in perturbation theory

2. Perturbative effects

- Infrared singularities (pinch surfaces) complicated
- Gauge dependence subtle
- Off-shell modes (Glauber gluons)

3. Hard even to formulate theorem

- Precisely what is supposed to hold?
- Gauge-invariant and regulator-independent formulation?

Historically, four approaches

Approach 1: Operator Products

Deep inelastic scattering

- Use OPE around $\omega=0$ to expand at large Q^{2}
- Physical region has $\omega>1$

- OPE is possible because we can analytically continue
- We know analytic structure because

1. Inclusive over final states
2. Analytic structure of two-point function $J_{\mu}(x) J_{\nu}(0)$ known exactly

- Analytic structure for more complicated processes not known exactly

Approach 2: Pinch surfaces

Collins, Soper, Sterman: pinch surfaces factorize

Fig. 5.11. Cancellations for a complicated garden. The shaded area is the soft subgraph. The solid lines are tulip boundaries. Addition of tulips with new boundary portions along one or more of the dashed
Collins \& Soper, 1981 or dotted lines produces cancellations.

Fig. 5.7. A two-tulip garden.

Approach 2: Pinch surfaces

- All momenta zero or exactly proportional to some external momentum
- Sidesteps soft/collinear overlap region (zero bin)
- More work needed to factorize finite-momentum amplitudes
- Factorizes hard from jet/soft - does not factorize jet from soft
- Do not provide operator definitions

Approach 3: Amplitudes

Collinear

Primary goal is practical formulas (e.g. for subtractions):
Tree-level

$$
\mathcal{M} \rightarrow \mathcal{M} \times \mathcal{P}_{a b}
$$

DGLAP splitting functions (1977)

$$
P_{q q}(z)=C_{F}\left[\left(1+z^{2}\right)\left[\frac{1}{1-z}\right]_{+}+\frac{3}{2} \delta(1-z)\right]
$$

- Leading order splitting functions universal (process independent)
- Splitting functions for PDF evolution defined to all orders

One-loop

- IR divergent at 1-loop
- Relevant diagrams are gauge and process-dependent
- Bern and Chalmers (1995): collinear universality proven at 1-loop
- Kosower (1999): universality proven to all orders at leading color (large \mathbf{N})
- No all-orders proof in QCD (until now)

Approach 3: Amplitudes

Soft

- Wilson line picture does not disentangle soft from collinear
- Universal soft current conjecture (Catani \& Grassini 2000)

$$
\left\langle a \mid \mathcal{M}\left(q, p_{1}, \ldots, p_{m}\right)\right\rangle \simeq \varepsilon^{\mu}(q) J_{\mu}^{a}(q, \epsilon)\left|\mathcal{M}\left(p_{1}, \ldots, p_{m}\right)\right\rangle\left[1+\mathcal{O}\left(g_{\mathrm{S}}^{4}\right)\right],
$$

Computed in dim reg at 1-loop (Catani \& Grassini 2000)

(a)

(b)

(c)

(d)

(e)

- Soft current computed in dim reg at 2-loop (Duhr \& Gehrmann 2013, Zhu \& Li 2013)
- Required for NNLO subtractions and automation
- No operator definition of J
- all orders universality unproven (until now)

Approach 4: Soft-Collinear Effective Theory

- Assigns scaling behavior to fields
- Expand Lagrangian to leading power

$$
\begin{aligned}
& +2 \text {-gluon }+3 \text {-gluon }+\ldots+\mathcal{O}(\lambda)
\end{aligned}
$$

Advantages

- Clarifies universality
- Employs powerful renormalization group methods
- Parameterizes power corrections

Disadvantages

- Feynman rules messy
- Field scaling is gauge-dependent and unphysical
- Zero-bin subtraction frustrates true continuum limit
- How do we know that modes aren't missing?
- (soft-collinear messenger modes? Glauber modes?)

FACTORIZATION SIMPLIFIED

A precise statement of factorization:

$$
\langle X| \mathcal{O}|0\rangle \cong \mathcal{C}\left(S_{i j}\right) \frac{\left\langle X_{1}\right| \phi^{\star} W_{1}|0\rangle}{\langle 0| Y_{1}^{\dagger} W_{1}|0\rangle} \cdots \frac{\left\langle X_{N}\right| W_{N}^{\dagger} \phi|0\rangle}{\langle 0| W_{N}^{\dagger} Y_{N}|0\rangle}\left\langle X_{s}\right| Y_{1}^{\dagger} \cdots Y_{N}|0\rangle
$$

- Two different amplitudes in QCD are equal at leading power in finite kinematic ratios
- We prove this rigorously to all orders in perturbation theory

QCD:

$$
\mathcal{M}_{\{ \pm\}} \cong \sum_{I} \mathcal{C}_{I,\{ \pm\}}\left(S_{i j}\right)
$$

$$
\begin{aligned}
& \times \cdots \frac{\left\langle X_{i}\right| \bar{\psi}_{i} W_{i}|0\rangle^{ \pm h_{i}}}{\operatorname{tr}\langle 0| Y_{i}^{\dagger} W_{i}|0\rangle} \cdots \frac{\left\langle X_{j}\right| A^{\mu} \mathcal{W}_{j}|0\rangle^{ \pm a_{j}}}{\operatorname{tr}\langle 0| \mathcal{Y}_{j}^{\dagger} \mathcal{W}_{j}|0\rangle} \cdots \frac{\left\langle X_{k}\right| W_{k}^{\dagger} \psi_{k}|0\rangle^{ \pm h_{k}}}{\operatorname{tr}\langle 0| W_{k}^{\dagger} Y_{k}|0\rangle} \cdots \\
& \quad \times\left\langle X_{s}\right| \cdots\left(Y_{i}^{\dagger} T_{I}^{i}\right)^{h_{i} l_{i}} \cdots\left(\mathcal{Y}_{j}^{\dagger} T_{I}^{j}\right)^{l_{j-1} a_{j} l_{j+1}} \cdots\left(T_{I}^{k} Y_{k}\right)^{l_{k} h_{k}} \cdots|0\rangle
\end{aligned}
$$

Matrix element in QCD

Leading power in momentum scaling

Jet amplitudes

Operator definition of zero-bin subtraction

Advantages of this approach:

- Gauge and regulator independent
- Soft, Collinear and Soft-Collinear factorization rigorously proven at amplitude level
- Combines pinch analysis (reduced diagrams), amplitudes and SCET

Applies to entire amplitude, not just IR divergent regions

- Scaling of external momenta is physical
- No discussion of field scalling is required

Simplifies derivation of SCET

Connection to amplitudes

$$
\mathcal{M}_{f i} \cong \mathcal{C}_{c_{i} h_{j}}\left(S_{i j}\right) \frac{\left\langle X_{1}\right| \psi^{*} W_{1}|0\rangle^{h_{1} c_{1}}}{\langle 0| Y_{1}^{\dagger} W_{1}|0\rangle} \cdots \frac{\langle 0| \bar{W}_{N}^{\dagger} \psi\left|X_{N}\right\rangle^{h_{N} c_{N}}}{\langle 0| \bar{W}_{N}^{\dagger} \bar{Y}_{N}|0\rangle}\left\langle X_{s}^{f}\right| Y_{1}^{\dagger} \cdots \bar{Y}_{N}\left|X_{s}^{i}\right\rangle^{c_{1} \cdots c_{N}}
$$

- Gives operator definition of soft current and matrix element
- Gauge invariant and regulator independent
- Previous results only in Feynman gauge with dimensional regularization
- Generalizes Kosower's large N proof to finite N
- Gauge invariant and regulator independent
- Operator definition of splitting functions for any process

Connection to SCET

- Give any state in $\mid X_{j}>$ the quantum number " j "
- Give any state in $\mid X_{s}>$ the quantum number " s "
- Introduce gluon and quark fields which can create and destroy these states

$$
\mathcal{L}_{\text {eff }} \equiv \underset{\nwarrow}{\mathcal{L}_{1}}+\cdots \mathcal{L}_{\nearrow}+\underset{\nearrow}{\mathcal{L}_{s}}
$$

Then
Identical copies of QCD Lagrangian

$$
\begin{aligned}
\left\langle X_{1} \cdots X_{m} X_{s}\right| \bar{\psi}_{1} \cdots \psi_{m}|0\rangle_{\mathcal{L}_{\mathrm{QCD}}} & \sim \\
& \left\langle X_{1}\right| \bar{\psi}_{1} W_{1}|0\rangle \cdots\left\langle X_{m}\right| W_{m}^{\dagger} \psi_{m}|0\rangle\left\langle X_{s}\right| Y_{1} \cdots Y_{m}^{\dagger}|0\rangle_{\mathcal{L}_{\mathrm{QCD}}} \\
& =\left\langle X_{1} \cdots X_{m} X_{s}\right| \bar{\psi}_{1} W_{1} Y_{1} \cdots Y_{m} W_{m}^{\dagger} \psi_{m}|0\rangle_{\mathcal{L}_{\mathrm{eff}}}
\end{aligned}
$$

Now a single operator in an effective theory

- This formulation is most similar to Luke/Freedman SCET (2011)
- Equivalent to label SCET [Bauer et al 2001] and multipole SCET [Beneke et al 2002] at leading power
- Provides operator definition of zero-bin subtraction

$$
\widehat{Z}_{i} \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0| W_{i}^{\dagger} Y_{i}|0\rangle
$$

Outline of proof

1. Establish power counting
2. Separate soft-sensitive gluons from soft-insensitive ones
3. Prove "reduced diagram" structure at leading power in physical gauges

4. Prove soft collinear decoupling

$$
\left\langle X_{1} \cdots X_{N} ; X_{s}\right| \mathcal{O}|0\rangle
$$

5. Prove gauge-invariant formulation

$$
\mathcal{M}_{f i} \cong \mathcal{C}_{c_{i} h_{j}}\left(S_{i j}\right) \frac{\left\langle X_{1}\right| \psi^{*} W_{1}|0\rangle^{h_{1} c_{1}}}{\langle 0| Y_{1}^{\dagger} W_{1}|0\rangle} \cdots \frac{\langle 0| \bar{W}_{N}^{\dagger} \psi\left|X_{N}\right\rangle^{h_{N} c_{N}}}{\langle 0| \bar{W}_{N}^{\dagger} \bar{Y}_{N}|0\rangle}\left\langle X_{s}^{f}\right| Y_{1}^{\dagger} \cdots \bar{Y}_{N}\left|X_{s}^{i}\right\rangle^{c_{1} \cdots c_{N}}
$$

Summary

- Matrix elements of states with only soft and collinear momenta factorize:

$$
\mathcal{M}_{f i} \cong \mathcal{C}_{c_{i} h_{j}}\left(S_{i j}\right) \frac{\left\langle X_{1}\right| \psi^{*} W_{1}|0\rangle^{h_{1} c_{1}}}{\langle 0| Y_{1}^{\dagger} W_{1}|0\rangle} \cdots \frac{\langle 0| \bar{W}_{N}^{\dagger} \psi\left|X_{N}\right\rangle^{h_{N} c_{N}}}{\langle 0| \bar{W}_{N}^{\dagger} \bar{Y}_{N}|0\rangle}\left\langle X_{s}^{f}\right| Y_{1}^{\dagger} \cdots \bar{Y}_{N}\left|X_{s}^{i}\right\rangle^{c_{1} \cdots c_{N}}
$$

- Generalizes Collins-Soper-Sterman pinch analysis
- Works for amplitudes with nonsingular momenta
- In addition, soft and collinear modes factorized
- Defines and proves factorization of amplitudes
- gauge-invariant and regulator-independent definition for Catani-Grassini soft current.
- Collinear factorization proven to all orders
- Soft-collinear factorization proven to all orders

$$
\mathcal{L}_{\text {eff }} \equiv \mathcal{L}_{1}+\cdots \mathcal{L}_{m}+\mathcal{L}_{s}
$$

- Easily written with an effective Lagrangian:
$\left\langle X_{1} \cdots X_{m} X_{s}\right| \bar{\psi}_{1} \cdots \psi_{m}|0\rangle_{\mathcal{L}_{\mathrm{QCD}}} \sim\left\langle X_{1} \cdots X_{m} X_{s}\right| \bar{\psi}_{1} W_{1} Y_{1} \cdots Y_{m} W_{m}^{\dagger} \psi_{m}|0\rangle_{\mathcal{L}_{\text {eff }}}$
- Equivalent to SCET Lagrangian at leading power
- Avoids having to fix a gauge
- Avoids having to assign scaling behavior to unphysical fields
- Operator definition of zero-bin subtraction

$$
\widehat{Z}_{i} \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0| W_{i}^{\dagger} Y_{i}|0\rangle
$$

Future directions

- Proofs of factorization dramatically simpler
- Can forward scattering be understood the same way?
- Add Glauber modes to reduced diagrams?
- Possible with our off-shell reduced diagrams
- Cleaner understanding of BFKL
- Leading power derivation, to all orders?

- More exclusive observables?
- Universality of PDFs?
- Practical applications
- Jet physics at subleading power?
- Resummation of subleading power corrections has never been done
- Universal formulas for coefficients of soft divergences (anomalous dimensions)?
- Simpler subtraction schemes for NNLO or NNNLO calculations?
- We have a factorized expression which agrees in all soft or collinear limits

