# Calculating non-global logarithms to higher order in perturbation theory 



SLAC National Accelerator Laboratory
Hua Xing Zhu
1403.4949 in collaboration with Matthew Schwartz

## What is NGLs and why it's interesting:I

- Non-global observable [Dasgupta, Salam, 2001]
- Observable only sensitive to emissions in a restricted angular region. Examples:
- Invariant mass of individual jets
- Distributions of interjet energy flow
- Original Sterman-Weinberg jet cross section
- ...

Global observable: Higgs qT

$\mathrm{qT}=-$ (transverse momentum of all QCD radiations)
non-global observable: individual jet mass
$m_{J}^{2}$

(momentum of parton inside the jet) ${ }^{\wedge} 2$

## What is NGLs and why it's interesting:II

- Impact of non-global logarithms: reduction in the peak height by $\sim 30 \%$



## Known facts about NGLs

- Large logarithms $\mathrm{L}=\ln (\mathrm{m})$ in jet mass due to soft and collinear singularities of QCD
- When $\alpha_{S} L \sim 1$ perturbation expansion in strong coupling break down. Need resummation!
- A typical non-global observable receive both global and non-global contributions

$$
\begin{aligned}
& \Sigma_{J}\left(M_{J}\right)=\frac{1}{\sigma} \int_{0}^{M_{J}} d m_{J} \frac{d \sigma}{d m_{J}} \\
& \Sigma_{J}\left(M_{J}\right)=S\left(\ln M_{J}\right) \times \Sigma_{P}\left(\ln M_{J}\right)
\end{aligned}
$$

- $\Sigma_{P}\left(\ln M_{J}\right)$ Global contribution, can be resumed using standard resummation tech.
- $S_{J}\left(\ln M_{J}\right)$ Non-global contribution, difficult to resum analytically
- The leading logarithmic contribution to $S_{J}\left(\ln M_{J}\right)$ originates from soft radiations
- Is single log at each order in perturbation expansion

$$
S_{J}\left(\ln M_{J}\right)=1+\alpha_{S}^{2} L^{2}+\alpha_{S}^{3} L^{3}+\alpha_{S}^{4} L^{4}+\ldots
$$

## LO calculation of NGLs

- The LO contribution (two loops) first calculated for hemisphere mass distribution (Dasgupta, Salam, 2001)

- LO contribution known exactly: $S^{(2)}=-\frac{\zeta(2)}{4} \bar{\alpha}_{S}^{2} N_{c}^{2} \ln ^{2} \rho$
- Get contribution only from strong-gluon-energy-ordered configuration
- Analytical treatment at all orders is difficult. Method of [Dasgupta and Salam 2001]:
- Complicated color structure: large Nc approximation
- Complicated geometry structure: use Monte Carlo numerical branching algorithm

$$
\begin{array}{ll}
P_{\mathcal{C}^{\prime}}\left(L^{\prime}\right)=\bar{\alpha}_{\mathrm{S}}\left(L^{\prime}\right) \Delta_{\mathcal{C}}\left(L, L^{\prime}\right) F_{\mathcal{C}}\left(\theta^{\prime}, \phi^{\prime}\right) P_{\mathcal{C}}(L) & \mathcal{S}\left(\alpha_{\mathrm{s}} L\right)=\frac{1}{\sqrt{\Delta_{a b}(L)}} \sum_{\mathcal{C | H R} \mathrm{R} \text { emply }} P_{\mathcal{C}}(L) \\
F_{\mathcal{C}}\left(\theta_{k}, \phi_{k}\right)=\sum_{\text {dipolesij }} \frac{2 C_{A}}{\left(1-\cos \theta_{i k}\right)\left(1-\cos \theta_{k j}\right)}
\end{array}
$$

- Can we solve the geometry structure analytically, at least in the first few orders?


## Diagrammatic construction of integrand beyond LO: I

- Approximation used in the simplification of integrand:
- Strong energy ordering limit (Bassetto, Ciafaloni, Marchesini, Pyhy.Rept. 100, 201)
- Large Nc approximation: only planar corrections
- At $\mathrm{N} \wedge \mathrm{kLO}$
- Tree-level matrix element for $\mathrm{k}+2$ soft gluon emission $W_{R R \ldots R}$
- One-loop matrix element for $\mathrm{k}+1$ soft gluon emission $W_{R \ldots V \ldots R}$
- Two-loop matrix element for $k$ soft gluon emission $W_{R \ldots V \ldots V \ldots R}$
- ....
- K-loop matrix element for 2 soft gluon emission $W_{V \ldots R \ldots R \ldots V}$
- At leading logarithmic approximation, loop matrix element can be related to real matrix element by unitarity

$$
\int W_{\ldots R}+W_{\ldots V}=0
$$

## Diagrammatic construction of integrand beyond LO: II

- Matrix elements for m real gluon emission

$$
\begin{aligned}
& \left|\mathcal{M}_{a b}^{1 \cdots m}\right|^{2}=N_{c}^{m} g^{2 m} \frac{1}{\omega_{1}^{2} \cdots \omega_{m}^{2}} \mathcal{P}_{a b}^{1 \cdots m} \\
& \mathcal{P}_{a b}^{1 \ldots m}=\sum_{\text {perms. of } 1 \ldots m} \frac{(a b)}{(a 1)(12) \ldots(m b)} \quad(i j) \equiv \frac{p_{i} \cdot p_{j}}{\omega_{i} \omega_{j}}=1-\cos \theta_{i j}
\end{aligned}
$$

- Real-virtual and virtual amplitude from unitarity

$$
\begin{gathered}
\mathcal{W}_{R}=\mathcal{P}_{a b}^{1}, \quad \mathcal{W}_{V}=-\mathcal{W}_{R} \\
\mathcal{W}_{R R}=\mathcal{P}_{a b}^{12} \quad \mathcal{W}_{R V}=-\mathcal{W}_{R R} \quad \mathcal{W}_{V R}=-\mathcal{P}_{a b}^{1} \mathcal{P}_{a b}^{2} \quad \mathcal{W}_{V V}=-\mathcal{W}_{V R} \\
C_{1}=\mathcal{P}_{a b}^{123}=\mathcal{W}_{R R R}=-\mathcal{W}_{R R V} \\
C_{2}=\mathcal{P}_{a b}^{12}\left(\mathcal{P}_{a 1}^{3}+\mathcal{P}_{b 1}^{3}\right)=\mathcal{W}_{R V V}=-\mathcal{W}_{R V R} \\
C_{3}=\mathcal{P}_{a b}^{1} \mathcal{P}_{a b}^{23}=-\mathcal{W}_{V R R}=\mathcal{W}_{V R V} \\
C_{4}=\mathcal{P}_{a b}^{1} \mathcal{P}_{a b}^{2} \mathcal{P}_{a b}^{3}=\mathcal{W}_{V V R}=-\mathcal{W}_{V V V}
\end{gathered}
$$

## Diagrammatic construction of integrand beyond LO: III

- Differential cross section at strong-energy-ordered limit

$$
\begin{aligned}
\frac{1}{\sigma_{0}} d \sigma_{m}=\quad \bar{\alpha} \frac{d \omega_{1}}{\omega_{1}} \frac{d \Omega_{1}}{4 \pi}\left(\mathcal{W}_{R}+\mathcal{W}_{V}\right)
\end{aligned} \quad \begin{aligned}
& \quad+\frac{\bar{\alpha}^{2}}{2!} \frac{d \omega_{1}}{\omega_{1}} \frac{d \Omega_{1}}{4 \pi} \frac{d \omega_{2}}{\omega_{2}} \frac{d \Omega_{2}}{4 \pi}\left(\mathcal{W}_{R R}+\mathcal{W}_{R V}+\mathcal{W}_{V R}+\mathcal{W}_{V V}\right) \\
& \\
& \quad+\frac{\bar{\alpha}^{3}}{3!} \frac{d \omega_{1}}{\omega_{1}} \frac{d \Omega_{1}}{4 \pi} \frac{d \omega_{2}}{\omega_{2}} \frac{d \Omega_{2}}{4 \pi} \frac{d \omega_{3}}{\omega_{3}} \frac{d \Omega_{3}}{4 \pi}\left(\mathcal{W}_{R R R}+\mathcal{W}_{R R V}+\cdots\right)
\end{aligned}
$$

- Right hemisphere mass distribution

$$
S(\rho)=\frac{1}{\sigma_{0} \Sigma_{P}(\rho)} \int d \sigma_{m} \Theta\left(\rho Q-\sum_{i} 2\left(p_{i} \cdot n\right) \theta_{R}\left(p_{i}\right)\right)
$$



$$
\Theta\left(\rho Q-\sum_{i} 2\left(p_{i} \cdot n\right) \theta_{R}\left(p_{i}\right)\right) \rightarrow \Theta\left(\rho Q-\sum \omega_{i}\right)
$$

- Integrand beyond LO can be algorithmically worked out


## Integrand bootstrap: I

- Non-global logarithms obey an integro-differential equation (Banfi-Marchesini-Syme, 2002). First formulated for interjet energy flow
- BMS equation for hemisphere mass distribution

$$
\left.U_{a b j}(L)=\exp \left[L \int_{\text {right }} \frac{d \Omega_{1}}{4 \pi} \mathcal{P}_{a b}^{1}-\mathcal{P}_{a j}^{1}-\mathcal{P}_{j b}^{1}\right)\right]
$$

$$
\partial_{L} g_{a b}(L)=\int_{\text {left }} \frac{d \Omega_{j}}{4 \pi} \mathcal{P}_{a b}^{j}\left[U_{a b j}(L) g_{a j}(L) g_{j b}(L)-g_{a b}(L)\right]
$$

- Difficult to solve analytically
- Expansion in perturbation theory; first non-trivial corrections starting at two loops

$$
g_{a b}(L)=1+g_{a b}^{(1)}(L)+g_{a b}^{(2)}(L)+g_{a b}^{(3)}(L)+g_{a b}^{(4)}(L)+\ldots \quad g_{a b}^{(n)}(L) \propto L^{n}
$$

## Integrand bootstrap: II

- Expand to two loops

$$
\begin{aligned}
\partial_{L} g_{a b}^{(2)}(L) & =\int_{\text {left }} \frac{d \Omega_{1}}{4 \pi} \frac{(a b)}{(a 1)(1 b)}\left[U_{a b 1}^{(1)}(L)+g_{a 1}^{(1)}(L)+g_{1 b}^{(1)}(L)-g_{a b}^{(1)}(L)\right] \\
& =\int_{\text {left }} \frac{d \Omega_{1}}{4 \pi} \frac{(a b)}{(a 1)(1 b)}\left[L \int_{\text {right }} \frac{d \Omega_{2}}{4 \pi}\left(\mathcal{P}_{a b}^{2}-\mathcal{P}_{a 1}^{2}-\mathcal{P}_{1 b}^{2}\right)\right] \\
& =\frac{2}{L} \int \frac{d^{3} p_{1}}{2 E_{1}(2 \pi)^{3}} \frac{d^{3} p_{2}}{2 E_{2}(2 \pi)^{3}}\left(\mathcal{W}_{R R}+\mathcal{W}_{R V}+\mathcal{W}_{V R}+\mathcal{W}_{V V}\right) \Theta(\rho Q>(\text { right hemi. energy }))
\end{aligned}
$$

- Expand to three loops and four loops

$$
\begin{aligned}
\partial_{L} g_{a b}^{(3)}(L) & =\int_{\text {left }} \frac{d \Omega_{1}}{4 \pi} \frac{(a b)}{(a 1)(1 b)}\left[U_{a b 1}^{(2)}(L)+g_{a 1}^{(2)}(L)+g_{1 b}^{(2)}(L)-g_{a b}^{(2)}(L)\right] \\
& =\frac{3}{L} \int \frac{d^{3} p_{1}}{2 E_{1}(2 \pi)^{3}} \frac{d^{3} p_{2}}{2 E_{2}(2 \pi)^{3}} \frac{d^{3} p_{3}}{2 E_{3}(2 \pi)^{3}}\left(\mathcal{W}_{R R R}+\cdots+\mathcal{W}_{V V V}\right) \Theta(\rho Q>\text { (right hemi. energy)) }
\end{aligned}
$$

$$
\partial_{L} g_{a b}^{(4)}(L)=\int_{\text {left }} \frac{d \Omega_{1}}{4 \pi} \frac{(a b)}{(a 1)(1 b)}\left[U_{a b 1}^{(3)}(L)+U_{a b 1}^{(1)}(L)\left(g_{a 1}^{(2)}(L)+g_{1 b}^{(2)}(L)\right)+g_{a 1}^{(3)}(L)+g_{1 b}^{(3)}(L)-g_{a b}^{(3)}(L)\right]
$$

## Integrating the integrand

$$
\partial_{L} g_{\bar{n} n}(L)=\int_{\text {left }} \frac{d \Omega_{j}}{4 \pi} \mathcal{P}_{\bar{n} n}^{j}\left[U_{\bar{n} n j}(L) g_{\bar{n} j}(L) g_{j n}(L)-g_{\bar{n} n}(L)\right]
$$

- To calculate hemisphere NGLs to m-loop, need to know NGLs for a and b point to same hemisphere, or a and b point to opposite hemisphere at m-1 loop
- For arbitrary a and b, need four degrees of freedom to specify the çonfiguration
- Some picture

$$
\theta_{a} \quad \phi_{a} \quad \theta_{b} \quad \phi_{b}
$$

- There are two more angles to specify the direction of $\Omega_{j}$

- Can use an obvious azimuthal symmetry around the hemisphere axis to fix one azimuthal angle
- Still has an integrand with 5 variables, and two integral to go, quite difficult

$$
\int_{0}^{\pi / 2} \sin \theta_{j} d \theta_{j} \int_{0}^{2 \pi} d \phi_{j}
$$

$$
\begin{gathered}
\prime \log \left[\left(2 \operatorname{Cos}\left[\theta_{j}\right]^{2}\left(1-\operatorname{Cos}\left[\theta_{a}\right] \operatorname{Cos}\left[\theta_{b}\right]-\operatorname{Cos}\left[\phi_{b}\right] \operatorname{Sin}\left[\theta_{a}\right] \operatorname{Sin}\left[\theta_{b}\right]\right)\right) /\right. \\
\quad\left(\left(1-\operatorname{Cos}\left[\theta_{a}\right] \operatorname{Cos}\left[\theta_{j}\right]-\operatorname{Cos}\left[\phi_{j}\right] \operatorname{Sin}\left[\theta_{a}\right] \operatorname{Sin}\left[\theta_{j}\right]\right)\right. \\
\left.\left.\quad\left(1+\operatorname{Cos}\left[\theta_{b}\right] \operatorname{Cos}\left[\theta_{j}\right]-\operatorname{Cos}\left[\phi_{b}-\phi_{j}\right] \operatorname{Sin}\left[\theta_{b}\right] \operatorname{Sin}\left[\theta_{j}\right]\right)\right)\right] \\
\left.\left(1-\operatorname{Cos}\left[\theta_{a}\right] \operatorname{Cos}\left[\theta_{b}\right]-\operatorname{Cos}\left[\phi_{b}\right] \operatorname{Sin}\left[\theta_{a}\right] \operatorname{Sin}\left[\theta_{b}\right]\right) \operatorname{Sin}\left[\theta_{j}\right]\right) / \\
\left(16 \pi\left(1-\operatorname{Cos}\left[\theta_{a}\right] \operatorname{Cos}\left[\theta_{j}\right]-\operatorname{Cos}\left[\phi_{j}\right] \operatorname{Sin}\left[\theta_{a}\right] \operatorname{Sin}\left[\theta_{j}\right]\right)\right. \\
\left.\left(1-\operatorname{Cos}\left[\theta_{b}\right] \operatorname{Cos}\left[\theta_{j}\right]-\operatorname{Cos}\left[\phi_{b}-\phi_{j}\right] \operatorname{Sin}\left[\theta_{b}\right] \operatorname{Sin}\left[\theta_{j}\right]\right)\right)
\end{gathered}
$$

- Any other simplification?


## Symmetry of the BMS equation: I

- BMS equation formally similar to Balitsky-Kovchegov equation. There is a well-known SL(2,C) symmetry in the BK equation. Same should be true in BMS equation (Hatta, Ueda, 0909.0056)
- The direction of the integrated momenta j can be parametrized by a conformal 2 sphere. Mapping the 2 sphere to complex plane by stereographic projection

$$
\begin{aligned}
& z=e^{i \phi} \tan \frac{\theta}{2} \\
& d \Omega=d \cos \theta d \phi=\frac{4 d z d \bar{z}}{\left(1+|z|^{2}\right)^{2}} \\
& d \Omega_{j} \frac{(a b)}{(a j)(j b)}=d^{2} z \frac{\left|z_{a}-z_{b}\right|^{2}}{\left|z_{a}-z_{j}\right|^{2}\left|z_{j}-z_{b}\right|^{2}}
\end{aligned}
$$



Combination of $d \Omega$ and soft factor is invariant under Möbius transformation

$$
z \rightarrow \frac{\alpha z+\beta}{\gamma z+\delta}, \quad \alpha, \beta, \gamma, \delta \in \mathbb{C} \quad\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \simeq S L(2, \mathbb{C})
$$

## Symmetry of the BMS equation: II

- The actual symmetry group of BMS equation is smaller

$$
\partial_{L} g_{a b}(L)=\int_{\text {left }} \frac{d \Omega_{j}}{4 \pi} \mathcal{P}_{a b}^{j}\left[U_{a b j}(L) g_{a j}(L) g_{j b}(L)-g_{a b}(L)\right]
$$

Integral limited to left hemisphere

- On the projection complex plane, symmetry preserved for a subset of Möbius transformation which map unit disc to unit disc, the (P)SL(2,R) group
- The unit disc with the isometry group PSL(2,R) called Poincaré Disc


Density plot of the two-loop NGL integrand on the complex plane

## Symmetry of the BMS equation: III

- Can use isometry group $\operatorname{PSL}(2, \mathrm{C})$ to eliminate three degrees of freedom. $g_{a b}(L)$ only depends on a single isometry invariant

$$
\langle i j\rangle=\frac{\left|z_{i}-z_{j}\right|^{2}}{\left(1-\left|z_{i}\right|^{2}\right)\left(1-\left|z_{j}\right|^{2}\right)}=\frac{(i j)}{2 \cos \theta_{i} \cos \theta_{j}}
$$

- We can then map, e.g., $z_{a}=x_{a}+i y_{a}$ to the origin of complex plane. Two-loop integrand now simplified to

$$
\int_{0}^{\pi / 2} \sin \theta_{j} d \theta_{j} \int_{0}^{2 \pi} d \phi_{j} \frac{\left(1-\cos \theta_{b}\right) \ln \frac{2\left(1-\cos \theta_{b}\right) \cos ^{2} \theta_{j}}{\left(1-\cos \theta_{j}\right)\left(1+\cos \theta_{b} \cos \theta_{j}-\cos \phi_{j} \sin \theta_{b} \sin \theta_{j}\right)}}{16 \pi\left(1-\cos \theta_{j}\right)\left(1-\cos \theta_{b} \cos \theta_{j}-\cos \phi_{j} \sin \theta_{b} \sin \theta_{j}\right)}
$$

- Finite integral, can easily be evaluated numerically
- Can we do the integral analytically, with the help of recent developed integral technique from scattering amplitudes?


## Integrating the azimuthal angle: I

- The azimuthal angle integral can be cast into a contour integral

$$
\Phi_{2}=\int_{0}^{2 \pi} \frac{d \phi_{j}}{2 \pi} \frac{1}{1+\cos \theta_{j} \cos \theta_{b}-\cos \phi_{j} \sin \theta_{j} \sin \theta_{b}} \ln \frac{1+\cos \theta_{j} \cos \theta_{b}-\cos \phi_{j} \sin \theta_{j} \sin \theta_{b}}{2 \cos \theta_{j} \cos \theta_{b}}
$$

$$
\text { Change of variable } t=\exp \left(i \phi_{j}\right)
$$

$$
\begin{aligned}
& \Phi_{2}=-\frac{2}{\sin \theta_{j} \sin \theta_{b}} \oint_{C} \frac{d t}{2 \pi i} \frac{1}{\left(t-t_{+}\right)\left(t-t_{-}\right)} \ln \frac{1+\cos \theta_{j} \cos \theta_{b}-\sin \theta_{j} \sin \theta_{b}\left(\frac{1}{2 t}+\frac{t}{2}\right)}{2 \cos \theta_{j} \cos \theta_{b}} \\
& t_{+}=\frac{1-\cos \theta_{j} \cos \theta_{b}+\left|\cos \theta_{j}-\cos \theta_{b}\right|}{\sin \theta_{j} \sin \theta_{b}} \\
& t_{-}=\frac{1-\cos \theta_{j} \cos \theta_{b}-\left|\cos \theta_{j}-\cos \theta_{b}\right|}{\sin \theta_{j} \sin \theta_{b}} \\
& \text { - No single pole within C. A branch cut from the log } \\
& \text { - Integral contour can be shrink to near the real axis } \\
& \text { - Integral has the form of iterative integral after partial } \\
& \text { - rractioning } \\
& \text { Can be easily integrated in terms of multiple polylogs }
\end{aligned}
$$

$$
G\left(w_{1}, \ldots, w_{n} ; x\right)=\int_{0}^{x} \frac{d t}{t-w_{1}} G\left(w_{2}, \ldots, w_{n} ; t\right), \quad G(\underbrace{0, \ldots, 0}_{n} ; x)=\frac{1}{n!} \ln ^{n} x
$$

## Integrating the azimuthal angle: II

- Partial azimuthal integral from one loop to four loop

$$
\begin{align*}
\Phi_{1}= & \int_{0}^{2 \pi} \frac{d \phi_{j}}{2 \pi} \frac{1}{(j b)}=\frac{1}{\left|\cos \theta_{j}-\cos \theta_{b}\right|} \\
\Phi_{2}= & \int_{0}^{2 \pi} \frac{d \phi_{j}}{2 \pi} \frac{\ln (1+\langle j b\rangle)}{(j b)}=\frac{1}{\cos \theta_{j}-\cos \theta_{b}} \ln \frac{1+\langle b \bar{n}\rangle}{1+\langle j \bar{n}\rangle} \\
\Phi_{3}= & \int_{0}^{2 \pi} \frac{d \phi_{j}}{2 \pi} \frac{\ln \langle j b\rangle \ln (1+\langle j b\rangle)+\mathrm{Li}_{2}(-\langle j b\rangle)}{(j b)}=\frac{1}{\cos \theta_{b}-\cos \theta_{j}} \\
& \times\left[\ln \frac{1+\langle j \bar{n}\rangle}{1+\langle b \bar{n}\rangle} \ln \frac{\langle j \bar{n}\rangle+\langle b \bar{n}\rangle+|\langle j \bar{n}\rangle-\langle b \bar{n}\rangle|}{2}+\operatorname{Li}_{2}(-\langle j \bar{n}\rangle)-\operatorname{Li}_{2}(-\langle b \bar{n}\rangle)\right] \\
\Phi_{4}= & \left(\cos \theta_{b}-\cos \theta_{j}\right) \int_{0}^{2 \pi} \frac{d \phi_{j}}{2 \pi(j b)}\left[-\frac{1}{6} r_{j b}^{3}+\frac{1}{L^{3}} g_{j b}^{(3)}(L L)-\frac{1}{L^{2}} r_{j b b} g_{j b}^{(2)}(L)\right] \\
= & -\frac{1}{12} G\left(-1,0,\langle\langle\bar{n}\rangle ;\langle j \bar{n}\rangle)-\frac{1}{12} G(0,-1,\langle b \bar{n}\rangle ;\langle j \bar{n}\rangle)+\frac{1}{8} G(-1,0,-1 ;\langle j \bar{n}\rangle)\right. \\
& -\frac{1}{24} G(0,-1 ;\langle j \bar{n}\rangle) G(-1 ;\langle b \bar{n}\rangle)-\frac{1}{12} G\left(0,-1 ;\langle\langle\bar{n}\rangle) G\left(0 ;\langle\langle\bar{n}\rangle)+\frac{1}{12} G(-1 ;\langle j \bar{n}\rangle) G(0,0 ;\langle\langle\bar{n}\rangle)\right.\right. \\
& +\frac{1}{24} G(-1 ;\langle j \bar{n}\rangle) G(0,-1 ;\langle b \bar{n}\rangle)-\frac{1}{12} G\left(-1,0,0 ;\langle\langle\bar{n}\rangle)-\frac{1}{24} G(-1,0,-1 ;\langle b \bar{n}\rangle)\right. \\
& +\frac{\pi^{2}}{36} G(-1 ;\langle b \bar{n}\rangle)-\frac{\pi^{2}}{36} G(-1 ;\langle j \bar{\eta}\rangle), \tag{155}
\end{align*}
$$

- Results look quite simple
- Major complication at higher orders: increasingly complicated branch cut structure from multiple polylogs
- Alternative approach to the azimuthal integral?


## Integrating the polar angle

- The polar angle integral also has the form of iterative integral

$$
\text { A two-loop example } \quad \int_{b}^{c} d c_{j} \frac{1-c_{b}}{2\left(1-c_{j}\right)\left(c_{b}-c_{j}\right)}\left[\ln \frac{1+c_{b}}{2 c_{b}}-\ln \frac{1+c_{j}}{2 c_{j}}\right] \quad c_{i}=\cos \theta_{i}
$$

- Thanks to study in scattering amplitudes, we have many tools to deal with such integrals: symbols, coproduct, hyperlogarithms ...
- Compact results to four loops for $\mathrm{a}, \mathrm{b}$ point int the same hemisphere

$$
\begin{aligned}
\frac{1}{L^{2}} g_{a b}^{(2)}(L)= & -\frac{1}{4} G(-1,-1 ; x)+\frac{1}{4} G(-1,0 ; x) \\
= & \frac{1}{4} \ln x \ln (1+x)-\frac{1}{8} \ln ^{2}(1+x)+\mathrm{Li}_{2}(-x) \\
\frac{1}{L^{3}} g_{a b}^{(3)}(L)= & \frac{\pi^{2}}{36} G(-1 ; x)-\frac{1}{4} G(-1,-1,-1 ; x)+\frac{1}{4} G(-1,-1,0 ; x)+\frac{1}{12} G(-1,0,-1 ; x) \\
& -\frac{1}{12} G(-1,0,0 ; x) \\
\frac{1}{L^{4}} g_{a b}^{(4)}(L)= & \frac{\pi^{2}}{36} G(-1,-1 ; x)-\frac{\pi^{2}}{144} G(-1,0 ; x)-\frac{3}{16} G(-1,-1,-1,-1 ; x)+\frac{3}{16} G(-1,-1,-1,0 ; x) \\
& +\frac{1}{12} G(-1,-1,0,-1 ; x)-\frac{1}{12} G(-1,-1,0,0 ; x)+\frac{1}{48} G(-1,0,-1,-1 ; x) \\
& -\frac{1}{96} G(-1,0,-1,0 ; x)-\frac{1}{32} G(-1,0,0,-1 ; x)+\frac{1}{48} G(-1,0,0,0 ; x)-\frac{\zeta(3)}{16} G(-1 ; x)
\end{aligned}
$$

## Connection with Buffer mechanism??

- Limit of NGLs when one of the Wilson line close to hemisphere edge
$\lim _{x \rightarrow \infty} g_{a b}^{(2)}(L)=-\frac{\pi^{2}}{24} L^{2}+\mathcal{O}\left(\frac{1}{x}\right)$,
$x \rightarrow \Rightarrow \mathrm{a}$ or b close to hemisphere edge
$\lim _{x \rightarrow \infty} g_{a b}^{(3)}(L)=\frac{\zeta(3)}{12} L^{3}+\mathcal{O}\left(\frac{1}{x}\right)$,
$\lim _{x \rightarrow \infty} g_{a b}^{(4)}(L)=\left(-\frac{\pi^{4}}{5760}-\frac{\zeta(3)}{48} \ln x\right) L^{4}+\mathcal{O}\left(\frac{1}{x}\right)$,

$$
x=\frac{1-\cos \theta_{a b}}{2 \cos \theta_{a} \cos \theta_{b}}
$$




- Asymptotic independence of measured-region geometry shape
- The easiest way to suppress emission at large L is to suppress emission close to hemisphere edge: a empty buffer a empty buffer
[Dasgupta, Salam, hep-ph/0203009]

$\left(\mathcal{H}_{t}\right)$

( $\left.\mathcal{H}_{\text {R }}\right)$
[Salam, Moríond 2003]
- Can the $\log (x)$ behavior responsible for buffer mechanism? Need higher order calculation!


## Hemisphere NGLs through to five loops

- Using the results for NGLs $g_{a b}(L)$ with a, b point to same hemisphere, we get hemisphere NGLs through to five loops analytically

$$
g_{n \bar{n}}(L)=1-\frac{\pi^{2}}{24} L^{2}+\frac{\zeta(3)}{12} L^{3}+\frac{\pi^{4}}{34560} L^{4}+\left(-\frac{\pi^{2} \zeta(3)}{360}+\frac{17 \zeta(5)}{480}\right) L^{5}+\ldots
$$

- We can also solve BMS equation on a grid, result in good agreement with Monte Carlo fit of [Dasgupta, Salam, 2001]
- Comparison of perturbative expansion with all order numerical resummed results


- Seems to converges for $L<0.5$


## Conclusion

- Analytically compute NGLs to four loops for $\mathrm{a}, \mathrm{b}$ pointing to the same hemisphere, five loops for hemisphere NGLs
- Symmetry of BMS equation of great help in the calculation
- Perturbative expansion works well for $\mathrm{L}<0.5$
- It would be good if we can
- Find an easier way to do the azimuthal integral?
- Bootstrapping $g_{a b}(L)$ ? (uniform weight, first entry condition, alphabet=\{0,1\})
- Interpolation between fixed order expansion (small L) and all order resummation (large L)?
- Are there hidden symmetry in the subleading logarithmic terms?


## Thank you!

