```
A PRECISION ANALYSIS
OF THE JET BROADENING DISTRIBUTIONS
[ GUIDO BELL]
based on: T. Becher, GB, M. Neubert, Phys. Lett. B 704 (2011) }27
    T. Becher, GB, Phys. Lett. B }713\mathrm{ (2012) }4
    T. Becher, GB, JHEP 1211 (2012) }12
    T. Becher, GB, Phys. Rev. Lett. 112 (2014) 182002
    T. Becher, GB, P. Monni, H. Prager, work in progress
```


Jet broadening

Definition:

$$
b_{T}=\frac{1}{2} \sum_{i}\left|\vec{p}_{i} \times \vec{n}_{T}\right|
$$

two-jet like: $b_{T} \simeq 0$

spherical: $b_{T} \simeq 0.4$

High-precision data from LEP, SLD, JADE, ...

- α_{s} determination
- testing ground for precision QCD techniques

α_{s} determinations

$\alpha_{s}\left(m_{Z}\right)$ determination from event shape fits

- NNLL / N ${ }^{3}$ LL resummations reduce uncertainties
- fits based on analytic power corrections lead to lower values
- tension between most precise determinations and world average
[AFHMS: Abbate, Fickinger, Hoang, Mateu, Stewart 10,12]

Status of jet broadenings

Early analyses revealed complex resummation structure

- recoil effects modify Sudakov exponent at NLL
- non-perturbative effects do not only shift but squeeze the distribution (quantified in analytic coupling model)
[Dokshitzer, Marchesini, Salam 98]

Recent progress using methods from Soft-Collinear Effective Theory

- first all-order factorisation theorem
[Chiu, Jain, Neill, Rothstein 11; Becher, GB, Neubert 11]
- extension to NNLL accuracy
- model-independent treatment of non-perturbative effects

Rapidity divergences

Factorisation theorem

$$
\frac{d \sigma}{d b_{T}} \sim H\left(\mu_{h}\right) J\left(\mu_{j}\right) \otimes J\left(\mu_{j}\right) \otimes S\left(\mu_{s}\right)
$$

\Rightarrow jet and soft functions are not individually
well-definied in dimensional regularisation

Additional regulator that discriminates modes by their rapidities

$$
\int d^{4} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- soft and jet functions contain divergences in α
- cancel in their product \Rightarrow induces large rapidity logarithms

Collinear anomaly

Rapidity logarithms exponentiate (in Laplace space)
[Chiu, Golf, Kelley, Manohar 07; Becher, Neubert 10; Chiu, Jain, Neill, Rothstein 11]

$$
\mathcal{J}(\mu) \mathcal{J}(\mu) \mathcal{S}(\mu)=\left(\frac{Q^{2}}{\mu^{2}}\right)^{-F(\mu)} W(\mu)
$$

- anomaly exponent $F(\mu)$, remainder function $W(\mu)$

Computed 2-loop $F(\mu)$ and 1-loop $W(\mu)$ to achieve NNLL accuracy

Non-perturbative effects

Use hadronisation models implemented in Monte Carlos

- MC parton level defined with IR cutoffs
- tuning mixes pert. + non-pert. effects
\Rightarrow cannot be used for precision studies

Instead use insights from factorisation

$$
\mathcal{J}(\mu) \mathcal{J}(\mu) \mathcal{S}(\mu)=\left(\frac{Q^{2}}{\mu^{2}}\right)^{-F(\mu)} W(\mu)
$$

\Rightarrow NP effects associated with collinear anomaly are logarithmically enhanced [Becher, GB 13]

Operator product expansion

Expand soft function in the limit $b_{L, R} \sim\left|p_{L, R}^{\perp}\right| \gg \Lambda_{Q C D}$

$$
\begin{aligned}
\mathcal{S}\left(b_{L}, b_{R}, p_{L}^{\perp}, p_{R}^{\perp}\right)= & \sum_{X, \text { reg }} \delta\left(b_{L}-\frac{1}{2} \sum_{i \in X_{L}}\left|p_{i}^{\perp}\right|\right) \delta\left(b_{R}-\frac{1}{2} \sum_{j \in X_{R}}\left|p_{j}^{\perp}\right|\right) \\
& \left.\times \delta^{d-2}\left(p_{L}^{\perp}-p_{X_{L}}^{\perp}\right) \delta^{d-2}\left(p_{R}^{\perp}-p_{X_{R}}^{\perp}\right)\left|\langle X| S_{n}^{\dagger}(0) S_{\bar{n}}(0)\right| 0\right\rangle\left.\right|^{2}
\end{aligned}
$$

Operator product expansion

Expand soft function in the limit $b_{L, R} \sim\left|p_{L, R}^{\perp}\right| \gg \Lambda_{Q C D}$

$$
\begin{aligned}
\mathcal{S}\left(b_{L}, b_{R}, p_{L}^{\perp}, p_{R}^{\perp}\right)= & \sum_{X, \text { reg }} \delta\left(b_{L}-\frac{1}{2} \sum_{i \in X_{L}}\left|p_{i}^{\perp}\right|\right) \delta\left(b_{R}-\frac{1}{2} \sum_{j \in X_{R}}\left|p_{j}^{\perp}\right|\right) \\
& \left.\times \delta^{d-2}\left(p_{L}^{\perp}-p_{X_{L}}^{\perp}\right) \delta^{d-2}\left(p_{R}^{\perp}-p_{X_{R}}^{\perp}\right)\left|\langle X| S_{n}^{\dagger}(0) S_{\bar{n}}(0)\right| 0\right\rangle\left.\right|^{2} \\
\simeq & \delta^{d-2}\left(p_{L}^{\perp}\right) \delta^{d-2}\left(p_{R}^{\perp}\right)\left[\delta\left(b_{L}\right) \delta\left(b_{R}\right)-\mathcal{M}_{L} \delta^{\prime}\left(b_{L}\right) \delta\left(b_{R}\right)-\mathcal{M}_{R} \delta\left(b_{L}\right) \delta^{\prime}\left(b_{R}\right)\right]
\end{aligned}
$$

- recoil corrections vanish due to rotation invariance
- leading non-perturbative effects are encoded in matrix element

$$
\left.\mathcal{M}_{L / R}=\sum_{X, \text { reg }} b_{X_{L / R}}\left|\langle X| S_{n}^{\dagger}(0) S_{\bar{n}}(0)\right| 0\right\rangle\left.\right|^{2}
$$

Rapidity divergences (again)

Introduce transverse energy-flow operator $\mathcal{E}_{T}(\eta)$
$\Rightarrow \mathcal{M}_{L / R}=c_{L / R}\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0) \mathcal{E}_{T}(0) S_{n}^{\dagger}(0) S_{\bar{n}}(0)|0\rangle=c_{L / R} \mathcal{A}$

- same NP matrix element \mathcal{A} that drives thrust shift
- calculable coefficients $c_{L}=\frac{1}{2} \int_{0}^{\infty} d \eta \quad c_{R}=\frac{1}{2} \int_{-\infty}^{0} d \eta$

Rapidity divergences (again)

Introduce transverse energy-flow operator $\mathcal{E}_{T}(\eta)$
$\Rightarrow \mathcal{M}_{L / R}=c_{L / R}\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0) \mathcal{E}_{T}(0) S_{n}^{\dagger}(0) S_{\bar{n}}(0)|0\rangle=c_{L / R} \mathcal{A}$

- same NP matrix element \mathcal{A} that drives thrust shift
- calculable coefficients

$$
c_{L}=\frac{1}{2} \int_{0}^{\infty} d \eta e^{\alpha \eta}=-\frac{1}{2 \alpha} \quad c_{R}=\frac{1}{2} \int_{-\infty}^{0} d \eta e^{\alpha \eta}=\frac{1}{2 \alpha}
$$

Rapidity divergences (again)

Introduce transverse energy-flow operator $\mathcal{E}_{T}(\eta)$
$\Rightarrow \mathcal{M}_{L / R}=c_{L / R}\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0) \mathcal{E}_{T}(0) S_{n}^{\dagger}(0) S_{\bar{n}}(0)|0\rangle=c_{L / R} \mathcal{A}$

- same NP matrix element \mathcal{A} that drives thrust shift
- calculable coefficients

$$
c_{L}=\frac{1}{2} \int_{0}^{\infty} d \eta e^{\alpha \eta}=-\frac{1}{2 \alpha} \quad c_{R}=\frac{1}{2} \int_{-\infty}^{0} d \eta e^{\alpha \eta}=\frac{1}{2 \alpha}
$$

Presence of other non-perturbative modes

perturbative modes NP modes

$$
\begin{array}{cc}
k_{s}^{\mu}=(b, b, b) & k_{s_{\Lambda}}^{\mu}=(\Lambda, \Lambda, \Lambda) \\
k_{c}^{\mu}=\left(\frac{Q}{b} b, b, \frac{b}{Q} b\right) & k_{c_{\Lambda}}^{\mu}=\left(\frac{Q}{b} \Lambda, \Lambda, \frac{b}{Q} \Lambda\right)
\end{array}
$$

Non-perturbative anomaly

Rapidity divergences find their counterpart in the jet functions

$$
\begin{aligned}
& \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\overline{\mathcal{J}}_{L}^{\text {pert }}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}^{\text {pert }}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}^{\text {pert }}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right) \\
& \times\left\{1+\frac{\mathcal{A}}{2}\left[\left(\quad+\frac{1}{\alpha}+\ln \left(\frac{\nu}{\Lambda}\right)\right) \tau_{L}+\left(\quad-\frac{1}{\alpha}-\ln \left(\frac{\nu}{\Lambda}\right)\right) \tau_{R}\right]\right\}
\end{aligned}
$$

Non-perturbative anomaly

Rapidity divergences find their counterpart in the jet functions

$$
\begin{aligned}
& \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\overline{\mathcal{J}}_{L}^{\text {pert }}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}^{\text {pert }}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}^{\text {pert }}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right) \\
& \times\left\{1+\frac{\mathcal{A}}{2}\left[\left(-\frac{1}{\alpha}-\ln \left(\frac{\nu Q \tau_{L}}{\Lambda}\right)+\frac{1}{\alpha}+\ln \left(\frac{\nu}{\Lambda}\right)\right) \tau_{L}+\left(+\frac{1}{\alpha}+\ln \left(\frac{\nu}{\Lambda Q \tau_{R}}\right)-\frac{1}{\alpha}-\ln \left(\frac{\nu}{\Lambda}\right)\right) \tau_{R}\right]\right\}
\end{aligned}
$$

Non-perturbative anomaly

Rapidity divergences find their counterpart in the jet functions

$$
\begin{aligned}
& \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\overline{\mathcal{J}}_{L}^{\text {pert }}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}^{\text {pert }}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}^{\text {pert }}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right) \\
& \times\left\{1+\frac{\mathcal{A}}{2}\left[\left(\begin{array}{ll}
-\ln \left(Q \tau_{L}\right)
\end{array}\right) \tau_{L}+\left(-\ln \left(Q \tau_{R}\right)\right\}\right.\right.
\end{aligned}
$$

\Rightarrow NP effects are enhanced by a rapidity logarithm

Non-perturbative anomaly

Rapidity divergences find their counterpart in the jet functions

$$
\begin{aligned}
& \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\overline{\mathcal{J}}_{L}^{\text {pert }}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}^{\text {pert }}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}^{\text {pert }}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right) \\
& \times\left\{1+\frac{\mathcal{A}}{2}\left[\left(\begin{array}{ll}
-\ln \left(Q \tau_{L}\right)
\end{array}\right) \tau_{L}+\left(-\ln \left(Q \tau_{R}\right)\right\}\right.\right.
\end{aligned}
$$

\Rightarrow NP effects are enhanced by a rapidity logarithm

At higher orders the leading NP corrections exponentiate

$$
\overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}\right) \overline{\mathcal{S}}\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)=\left(Q^{2} \tau_{L}^{2}\right)^{-F_{B}\left(\tau_{L}, z_{L}\right)}\left(Q^{2} \tau_{R}^{2}\right)^{-F_{B}\left(\tau_{R}, z_{R}\right)} W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}\right)
$$

- NP correction to anomaly exponent: $\quad F_{B}(\tau, z)=F_{B}^{\text {pert }}(\tau, z)+\frac{1}{4} \tau \mathcal{A}$

Implementation

The leading NP effect takes the form

$$
\frac{d \sigma}{d e}(e)=\frac{d \sigma_{\text {pert }}}{d e}\left(e-c_{e} \frac{\mathcal{A}}{Q}\right) \quad c_{B_{T}} \simeq-\ln B_{T} \quad c_{B_{W}} \simeq-1 / 2 \ln B_{W}
$$

- seen before in effective coupling model
(where non-log. corrections are also associated with \mathcal{A} - model-dependent!)

Drell-Yan production

The low q_{T} cross section is also affected by a collinear anomaly

$$
\frac{d^{2} \sigma}{d q_{T}^{2} d \eta}=\sum_{i j} H_{i j}\left(M^{2}\right) \int d^{2} x_{\perp} e^{-i x_{\perp} q_{\perp}}\left(x_{T}^{2} M^{2}\right)^{-F_{i j}\left(x_{T}^{2}\right)} B_{i / N_{1}}\left(\xi_{1}, x_{T}^{2}\right) B_{j / N_{2}}\left(\xi_{2}, x_{T}^{2}\right)
$$

- equivalent to Collins-Soper-Sterman formalism
- anomaly exponent $F_{i j}\left(x_{T}^{2}\right)$ known to two loops
- transverse-momentum-dependent PDFs $B_{i / N}\left(\xi, x_{T}^{2}\right)$ computed to two loops [Gehrmann, Lübbert, Yang 12,14]
\Rightarrow all ingredients for NNLL resummation available

Non-perturbative effects

NP effects are often modelled with a Gaussian cutoff or a variant thereof

$$
\int d^{2} x_{\perp} e^{-i x_{\perp} q_{\perp}}\left(x_{T}^{2} M^{2}\right)^{-F_{i j}\left(x_{T}^{2}\right)} B_{i / N_{1}}\left(\xi_{1}, x_{T}^{2}\right) e^{-\Lambda_{N P}^{2} x_{T}^{2}} B_{j / N_{2}}\left(\xi_{2}, x_{T}^{2}\right) e^{-\Lambda_{N P}^{2} x_{T}^{2}}
$$

Our analysis shows that leading NP effects are associated with collinear anomaly

$$
\int d^{2} x_{\perp} e^{-i x_{\perp} q_{\perp}}\left(x_{T}^{2} M^{2}\right)^{-F_{i j}\left(x_{T}^{2}\right)-\Lambda_{N P}^{2} x_{T}^{2}} B_{i / N_{1}}\left(\xi_{1}, x_{T}^{2}\right) B_{j / N_{2}}\left(\xi_{2}, x_{T}^{2}\right)
$$

[Becher, GB 13]

- $\Lambda_{N P}^{2}$ can be extracted from the matrix element

$$
\left.\mathcal{M}_{\perp}=\sum_{X, \mathrm{reg}} p_{X_{\perp}}^{2}\left|\langle X| S_{n}^{\dagger}(0) S_{\bar{n}}(0)\right| 0\right\rangle\left.\right|^{2}
$$

- depends on colour representation, but not on flavour i, j
- leading NP effects exponentiate

Conclusions

Systematic formalism to perform p_{T} resummation in SCET

$$
\int d^{d} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- efficient regulator to calculate resummation ingredients to higher orders

Field-theoretical understanding of NP effects to p_{T}-dependent observables

- logarithmic enhancement from collinear anomaly

High-precision analysis of jet broadening distributions

- perturbative input at NNLL+NNLO accuracy
- leading non-perturbative correction related to thrust shift

Backup slides

Factorisation

In the two-jet limit $b_{L} \sim b_{R} \rightarrow 0$ the broadening distribution factorises

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d b_{L} d b_{R}}= & H\left(Q^{2}, \mu\right) \int d b_{L}^{s} \int d b_{R}^{s} \int d^{d-2} p_{L}^{\perp} \int d^{d-2} p_{R}^{\perp} \\
& \mathcal{J}_{L}\left(b_{L}-b_{L}^{s}, p_{L}^{\perp}, \mu\right) \mathcal{J}_{R}\left(b_{R}-b_{R}^{s}, p_{R}^{\perp}, \mu\right) \mathcal{S}\left(b_{L}^{s}, b_{R}^{s},-p_{L}^{\perp},-p_{R}^{\perp}, \mu\right)
\end{aligned}
$$

- jet recoils against soft radiation
[Dokshitzer, Lucenti, Marchesini, Salam 98]
- relevant scales: $Q^{2} \gg b_{L}^{2} \sim b_{R}^{2} \sim\left(p_{L}^{\perp}\right)^{2} \sim\left(p_{R}^{\perp}\right)^{2}$

Factorisation

In the two-jet limit $b_{L} \sim b_{R} \rightarrow 0$ the broadening distribution factorises

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d b_{L} d b_{R}}= & H\left(Q^{2}, \mu\right) \int d b_{L}^{s} \int d b_{R}^{s} \int d^{d-2} p_{L}^{\perp} \int d^{d-2} p_{R}^{\perp} \\
& \mathcal{J}_{L}\left(b_{L}-b_{L}^{s}, p_{L}^{\perp}, \mu\right) \mathcal{J}_{R}\left(b_{R}-b_{R}^{s}, p_{R}^{\perp}, \mu\right) \mathcal{S}\left(b_{L}^{s}, b_{R}^{s},-p_{L}^{\perp},-p_{R}^{\perp}, \mu\right)
\end{aligned}
$$

Convenient to work in Laplace-Fourier space

- Laplace transform $b_{L, R} \rightarrow \tau_{L, R}$
- Fourier transform $p_{L, R}^{\perp} \rightarrow x_{L, R}^{\perp}$ and define $z_{L, R}=\frac{2\left|x_{L, R}^{\perp}\right|}{\tau_{L, R}}$

$$
\frac{1}{\sigma_{0}} \frac{d^{2} \sigma}{d \tau_{L} d \tau_{R}}=H\left(Q^{2}, \mu\right) \int d z_{L} \int d z_{R} \overline{\mathcal{J}}_{L}\left(\tau_{L}, z_{L}, \mu\right) \overline{\mathcal{J}}_{R}\left(\tau_{R}, z_{R}, \mu\right) \overline{\mathcal{S}}^{\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)}
$$

$H\left(Q^{2}, \mu\right)=$ square of on-shell vector form factor

Analytic regularisation in SCET

Our prescription amounts to

$$
\int d^{4} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- virtual corrections do not need regularisation
matrix elements of Wilson lines in QCD \Rightarrow the same for thrust and broadening technical reason: $\int d^{d-2} k_{\perp} f\left(k_{\perp}, k_{+}\right) \sim k_{+}^{-\epsilon}$
- required for observables sensitive to transverse momenta
$f\left(k_{\perp}, k_{+}\right) \sim \delta^{d-2}\left(k_{\perp}-p_{\perp}\right) \Rightarrow$ factor $k_{+}^{-\epsilon}$ absent \Rightarrow reinstalled as $k_{+}^{-\alpha}$
can show that the prescription regularises all LC singularities in SCET
- not sufficient for cases where virtual corrections are ill-defined
examples: electroweak Sudakov corrections, Regge limits

Collinear anomaly

Can show that the Q dependence exponentiates using and extending arguments from

- electroweak Sudakov resummation
[Chiu, Golf, Kelley, Manohar 07]
- p_{T} resummation in Drell-Yan production

Start from the logarithm of the product of jet and soft functions

$$
\begin{gathered}
\ln P=\ln \overline{\mathcal{J}}_{L}\left(\ln \left(Q \nu_{+} \bar{\tau}_{L}^{2}\right) ; \tau_{L}, z_{L}\right)+\ln \overline{\mathcal{J}}_{R}\left(\ln \left(\frac{\nu_{+}}{Q}\right) ; \tau_{R}, z_{R}\right)+\ln \overline{\mathcal{S}}\left(\ln \left(\nu_{+} \bar{\tau}_{L}\right) ; \tau_{L}, \tau_{R}, z_{L}, z_{R}\right) \\
/ \\
\text { collinear: } k_{+} \sim \frac{b^{2}}{Q}
\end{gathered} \quad \text { anticollinear: } k_{+} \sim Q \quad \text { soft: } k_{+} \sim b
$$

- use that product does not depend on ν_{+}and that it is LR symmetric

$$
\Rightarrow \ln P=\frac{k_{2}(\mu)}{4} \ln ^{2}\left(Q^{2} \bar{\tau}_{L} \bar{\tau}_{R}\right)-F_{B}\left(\tau_{L}, z_{L}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{L}^{2}\right)-F_{B}\left(\tau_{R}, z_{R}, \mu\right) \ln \left(Q^{2} \bar{\tau}_{R}^{2}\right)+\ln W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

- RG invariance implies $k_{2}(\mu)=0$ to all orders

$$
\Rightarrow \quad P\left(Q^{2}, \tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)=\left(Q^{2} \bar{\tau}_{L}^{2}\right)^{-F_{B}\left(\tau_{L}, z_{L}, \mu\right)}\left(Q^{2} \bar{\tau}_{R}^{2}\right)^{-F_{B}\left(\tau_{R}, z_{R}, \mu\right)} W\left(\tau_{L}, \tau_{R}, z_{L}, z_{R}, \mu\right)
$$

Transverse energy-flow operator

Introduce transverse energy-flow operator

$$
\mathcal{E}_{T}(\eta)|X\rangle=\sum_{i \in X}\left|p_{i}^{\perp}\right| \delta\left(\eta-\eta_{i}\right)|X\rangle
$$

- measures total transverse momentum
flowing into rapidity interval $\eta+d \eta$

Perform Lorentz boost along thrust axis
$\Rightarrow \mathcal{M}_{L / R}=c_{L / R}\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0) \mathcal{E}_{T}(0) S_{n}^{\dagger}(0) S_{\bar{n}}(0)|0\rangle=c_{L / R} \mathcal{A}$

- rapidity dependence $c_{L}=\frac{1}{2} \int_{0}^{\infty} d \eta$

$$
c_{R}=\frac{1}{2} \int_{-\infty}^{0} d \eta
$$

Transverse energy-flow operator

Introduce transverse energy-flow operator

$$
\mathcal{E}_{T}(\eta)|X\rangle=\sum_{i \in X}\left|p_{i}^{\perp}\right| \delta\left(\eta-\eta_{i}\right)|X\rangle
$$

- measures total transverse momentum
flowing into rapidity interval $\eta+d \eta$

Perform Lorentz boost along thrust axis
$\Rightarrow \mathcal{M}_{L / R}=c_{L / R}\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0) \mathcal{E}_{T}(0) S_{n}^{\dagger}(0) S_{\bar{n}}(0)|0\rangle=c_{L / R} \mathcal{A}$

- rapidity dependence $c_{L}=\frac{1}{2} \int_{0}^{\infty} d \eta \quad c_{R}=\frac{1}{2} \int_{-\infty}^{0} d \eta$
phase-space regulator: $\left(k_{1,+} \cdots k_{n,+}\right)^{-\alpha / n} \rightarrow e^{\alpha \eta}\left(k_{1,+} \cdots k_{n,+}\right)^{-\alpha / n}$

Transverse energy-flow operator

Introduce transverse energy-flow operator

$$
\mathcal{E}_{T}(\eta)|X\rangle=\sum_{i \in X}\left|p_{i}^{\perp}\right| \delta\left(\eta-\eta_{i}\right)|X\rangle
$$

- measures total transverse momentum
flowing into rapidity interval $\eta+d \eta$

Perform Lorentz boost along thrust axis
$\Rightarrow \mathcal{M}_{L / R}=c_{L / R}\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0) \mathcal{E}_{T}(0) S_{n}^{\dagger}(0) S_{\bar{n}}(0)|0\rangle=c_{L / R} \mathcal{A}$

- rapidity dependence $c_{L}=\frac{1}{2} \int_{0}^{\infty} d \eta e^{\alpha \eta}=-\frac{1}{2 \alpha} \quad c_{R}=\frac{1}{2} \int_{-\infty}^{0} d \eta e^{\alpha \eta}=\frac{1}{2 \alpha}$ phase-space regulator: $\left(k_{1,+} \cdots k_{n,+}\right)^{-\alpha / n} \rightarrow e^{\alpha \eta}\left(k_{1,+} \cdots k_{n,+}\right)^{-\alpha / n}$

Precision thrust analysis

distribution: $\quad \alpha_{S}\left(M_{Z}\right)=0.1135 \pm 0.0002(\exp) \pm 0.0005($ had $) \pm 0.0009$ (pert)
[Abbate et al 10]
moment: $\quad \alpha_{s}\left(M_{Z}\right)=0.1140 \pm 0.0004(\exp) \pm 0.0013($ had $) \pm 0.0007$ (pert)
[Abbate et al 12]
NNLO + NNLL: $\alpha_{S}\left(M_{Z}\right)=0.1131{ }_{-0.0022}^{+0.0028}$

