
Profiling of LArSoft code

Gianluca Petrillo

LArSoft stakeholders’ meeting, March 12th , 2014

G. Petrillo (University of Rochester) Profiling LArSoft March 12th , 2014 1 / 7



Profiling tools

For CPU profiling:
Timing (art service): per-event, module-level information

gperftools (Google) quick snapshot of where time is spent with full
call history

callgrind (valgrind tool) count of each call and used cycles

For memory profiling:
SimpleMemoryCheck (art service) mostly useful to detect large

memory leaks per-event, module-level information
massif (valgrind tool) complete heap map with allocating

functions
procfs (Linux) complete memory map (/proc/PID/maps) and

statistics

G. Petrillo (University of Rochester) Profiling LArSoft March 12th , 2014 2 / 7



Profiling time

Currently, I can run with e4:prof code:
plain run: 100-event samples (thousands should not be a problem)
statistical CPU speed profiling: few percent overhead respect to
plain
complete call profiling: 5-event chunks (takes 40’/1h each; 10
possible)
memory profiling: roughly as complete call profiling (it’s
valgrind)
memory and stack profiling: 3-event chunks (takes longer than
just memory)

A 8 GB memory machine would help making this quicker (virtual
memory is deadly for me and for the people on my same machine).

Stack profiling has shown to be not necessary (fortunately!).

G. Petrillo (University of Rochester) Profiling LArSoft March 12th , 2014 3 / 7



Currently on air

I have been focusing on µBooNE code, due to the coming MC
challenge and retreat:

profiling the full chain: GEANT simulation, detector digitization,
reconstruction
on top of a “busy” event: cosmic ray plus beam activity

Both the techniques and the code I am learning will be instrumental to
the optimization of LBNE as well.

G. Petrillo (University of Rochester) Profiling LArSoft March 12th , 2014 4 / 7



GEANT simulation

Worked on input data generated by
prodgenie_bnb_nue_cosmic_3window_uboone.fcl:

identified the places where most of the time is spent (MicroBooNE
configuration)

message facility dispatch: fixed (I’ve seen ×2 speed gain)
memory allocation mapped:

moving from dynamic to static allocation where proper
reduce the occurrences of data copy and duplication
use advanced allocation to avoid memory usage spikes

identified (and fixed) a couple of memory leaks

G. Petrillo (University of Rochester) Profiling LArSoft March 12th , 2014 5 / 7



Detector digitization

Worked on input data generated by
prodgenie_bnb_nue_cosmic_3window_uboone.fcl and
standard_g4_uboone.fcl.
Ongoing work:

helped Matt Toups and Kazuhiro Terao to fix a leak they found
memory allocation mapped
large “anonymous” memory pages... fragmentation?

Memory footprint is not only LBNE problem!
MicroBooNE code is, in the current status, very troublesome in a 2+2
GB memory (physical+virtual) environment.

G. Petrillo (University of Rochester) Profiling LArSoft March 12th , 2014 6 / 7



What’s next

In general, I have (or can get) a precise map of what uses memory.
Possible developments:

investigate memory fragmentation (hints point to that being a
major problem)
reduce memory usage by ROOT (it’s a trade off)
optimize the flow of data to avoid unnecessary copies and
duplication
analyse and optimize the scope of variables
reengineering of loops

After µBooNE retreat, I’ll also get back to LBNE GEANT simulation.

This work would be much more expedite if unit tests were already in
place.

G. Petrillo (University of Rochester) Profiling LArSoft March 12th , 2014 7 / 7


