

Aurelio Juste ICREA/IFAE, Barcelona

What was known about the Higgs boson at the beginning of Run 2:

2015

- Direct searches at LEP m_H>114.4 GeV @ 95% CL
- Indirect constraints from precision electroweak observables

m_H<200 GeV @ 95% CL

Higgs mass (GeV/c²)

Higgs Sensitivity Study ('03)

Over the years Higgs sensitivity projections were produced with increased degree of sophistication and realism.

SM Higgs Production at Hadron Colliders

SM Higgs Production at Hadron Colliders

SM Higgs Decay Modes

m_H<135 GeV: H→bb̄ dominates

m_H>135 GeV: H→W⁺W⁻ dominates

— Main mode

---- Supporting mode

LHC

Tevatron

Many decay modes explored to increase the sensitivity of the search to the SM Higgs boson, but also to a non-SM one!

The Stairway to the Higgs

Experiments established a solid foundation to search for the Higgs boson through precise measurements of SM processes.

Search Strategies

 Defined by a combination of theoretical and experimental considerations (large σxBR but experimentally feasible: trigger, backgrounds....).

For m_H=125 GeV, ~1000 Higgs events produced at the Tevatron in the main search channels with 10 fb⁻¹!

Searching for H→WW→IvIv

- Highest sensitivity channel in m_H~130-200 GeV range.
- Signature: opposite-sign dileptons+MET
- Main backgrounds after MET cut: WW, W/Z+jets, Wγ
- After final selection expect (m_H=165 GeV):
 ~7 signal events/fb⁻¹/experiment with S:B~1:50-1:100
- Aggressive program of improvements over the years to improve sensitivity:
 - Lepton ID/trigger, event selection optimization
 - Multivariate techniques

Expected sensitivity:

 \sim 10xSM at m_H=165 GeV

 \sim 100xSM at m_H=125 GeV

Searching for H→bb̄

- Highest sensitivity channel at the Tevatron for m_H<130 GeV.
- Signature: leptonic W/Z decays+jets
- Main challenge: understand/suppress background (eventually dominated by W/Z+heavy-flavor).

- Lepton, jet, MET trigger/reconstruction
- B-tagging
- Dijet mass resolution
- Multivariate techniques
- Minimize background uncertainties

Expected sensitivity:

~20xSM at m_H =115 GeV

(using JLIP b-tagger)

July 4, 2012: "Higgsdependence Day"

Final Tevatron Combined Results

Fingerprinting X(125)

Production Rate

- Maximum likelihood fit to data with signal rate as free parameter.
- Best-fit signal rate at m_H=125 GeV:

$$\mu = 1.44^{+0.59}_{-0.56}$$

Consistent with SM Higgs.

Reasonably consistent across channels.

Probing Higgs Boson Couplings

- Several production and decay mechanisms contribute to signal rates per channel
 - → interpretation is difficult
- Under some assumptions, all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors (κ) to the SM Higgs couplings.

Probe SU(2)_V custodial symmetry (is $\lambda_{WZ} = \kappa_W / \kappa_Z = 1$?)

$$\lambda_{WZ} = 1.24^{+2.34}_{-0.42}$$

Measure simultaneously coupling to fermions (κ_f) and to vector bosons (κ_V)

Spin/Parity

- Main sensitivity at the LHC through angular distributions of decay products in H→ZZ→4I, H→γγ and H→WW→IvIv.
- Main sensitivity at the Tevatron from the threshold behavior of the VH cross section:
 - s-wave for 0^+ : $\sigma \sim \beta$
 - p-wave for 0⁻: σ~β³
 - d-wave for 2⁺: $\sigma \sim \beta^5$

Spin/Parity

- Main discriminating variable: mass of the V+X system (with X being J^P=0⁺, 0⁻, 2⁺)
- Using publication results for VH, H→bb.
- Alternative J^P hypothesis rejected in favor of 0⁺:

Assuming μ =1:

- Exclude JP=0- (vs. 0+) with 97.6% CL
- Exclude J^P=2+ (vs. 0+) with 99.2% CL
- In addition, assume the observed X(125) is an admixture of two J^P eigenstates:

$$\phi = \cos \alpha H + \sin \alpha A$$

CP-even CP-odd

Assuming μ =1:

- Exclude f₀₋>0.85 @ 95% CL
- Exclude f₂₊>0.71 @ 95% CL

An Impressive Legacy

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90–150	Phys. Rev. Lett. 109, 121804 (2012)
_			and Phys. Rev. D 88, 052008 (2013)
$ZH o \ell\ell b ar b$	9.7	90–150	Phys. Rev. Lett. 109, 121803 (2012)
_			and Phys. Rev. D 88, 052010 (2013)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)
$H o W^+W^- o \ell^+ \nu \ell^- \bar{\nu}$	9.7	100-200	Phys. Rev. D 88, 052006 (2013)
$H + X \to WW \to \mu^{\pm}\tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H o W^+W^- o \ell \nu q' \bar{q}$	9.7	100-200	Phys. Rev. D 88, 052008 (2013)
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Phys. Rev. D 88, 052009 (2013)
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Phys. Rev. D 88, 052009 (2013)
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Phys. Rev. D 88, 052008 (2013)
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Phys. Rev. D 88, 052009 (2013)
$H + X \rightarrow \ell \tau_h jj$	9.7	105-150	Phys. Rev. D 88, 052005 (2013)
$H \rightarrow \gamma \gamma$	9.7	100-150	Phys. Rev. D 88, 052007 (2013)
CDF			
$WH \rightarrow \ell \nu bb$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH o \ell\ell bar b$	9.45	90-150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH o u \bar{ u} b \bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H o W^+W^- o \ell^+\nu\ell^-\bar{\nu}$	9.7	110-200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow WW \rightarrow e\tau_h \mu \tau_h$	9.7	130-200	Phys. Rev. D88, 052012 (2013)
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow \tau \tau$	6.0	100-150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100-150	Phys. Lett. B 717, 173 (2012)
H o ZZ o llll	9.7	120-200	Phys. Rev. D 86 072012 (2012)
$t\bar{t}H \to WWb\bar{b}b\bar{b}$	9.45	100-150	Phys. Rev. Lett. 109 181802 (2012)
$VH o jjbar{b}$	9.45	100-150	JHEP 1302 004 (2013)

CDF Combinations

H→bb: PRL 109, 111802 (2012)

All channels: PRD 88, 052013 (2013)

D0 Combinations

H→bb: : PRL 109, 121802 (2012)

All channels: PRD 88, 052011 (2013)

An Impressive Legacy

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012)
			and Phys. Rev. D 88, 052008 (2013)
$ZH o \ell\ell b ar b$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)
			and Phys. Rev. D 88, 052010 (2013)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	100-200	Phys. Rev. D 88, 052006 (2013)
$H + X \to WW \to \mu^{\pm}\tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H o W^+W^- o \ell \nu q' \bar{q}$	9.7	100-200	Phys. Rev. D 88, 052008 (2013)
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Phys. Rev. D 88, 052009 (2013)
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Phys. Rev. D 88, 052009 (2013)
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Phys. Rev. D 88, 052008 (2013)
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Phys. Rev. D 88, 052009 (2013)
$H + X \rightarrow \ell \tau_h j j$	9.7	105 - 150	Phys. Rev. D 88, 052005 (2013)
$H \rightarrow \gamma \gamma$	9.7	100-150	Phys. Rev. D 88, 052007 (2013)
CDF			
$WH \rightarrow \ell \nu bb$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell\ell b \bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H o W^+W^- o \ell^+\nu\ell^-\bar{\nu}$	9.7	110-200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow WW \rightarrow e\tau_h \mu \tau_h$	9.7	130-200	Phys. Rev. D88, 052012 (2013)
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow \tau \tau$	6.0	100-150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100-150	Phys. Lett. B 717, 173 (2012)
H o ZZ o llll	9.7	120-200	Phys. Rev. D 86 072012 (2012)
$t\bar{t}H \to WWb\bar{b}b\bar{b}$	9.45	100-150	Phys. Rev. Lett. 109 181802 (2012)
$VH o jjbar{b}$	9.45	100-150	JHEP 1302 004 (2013)

Tevatron combination: PRD 88, 052014 (2013)

All latest papers are in a single issue of PRD Publications on spin/parity upcoming

Conclusions

Delivering on a promise:

- Higgs program published with the full dataset.
- Achieved SM sensitivity over most of the accessible mass range.
- 3σ excess near m_H=125 GeV, compatible with the LHC observation.
- Valuable measurements of couplings.
 Probing spin/CP quantum numbers.
- The Higgs race at the Tevatron turned out to be a marathon requiring everybody in the machine and the experiments to run the extra mile to make these results possible.

Conclusions

Delivering on a promise:

- Higgs program published with the full dataset.
- Achieved SM sensitivity over most of the accessible mass range.
- 3σ excess near m_H=125 GeV, compatible with the LHC observation.
- Valuable measurements of couplings.
 Probing spin/CP quantum numbers.
- The Higgs race at the Tevatron turned out to be a marathon requiring everybody in the machine and the experiments to run the extra mile to make these results possible.

Conclusions

Delivering on a promise:

- Higgs program published with the full dataset.
- Achieved SM sensitivity over most of the accessible mass range.
- 3σ excess near m_H=125 GeV, compatible with the LHC observation.
- Valuable measurements of couplings.
 Probing spin/CP quantum numbers.
- The Higgs race at the Tevatron turned out to be a marathon requiring everybody in the machine and the experiments to run the extra mile to make these results possible.

The Tevatron legacy will live onto the LHC Run 2:

- Complementarity on physics capabilities.
- Development of novel experimental techniques, now in use at the LHC.
- Training of generations of physicists that are now helping materialize successes at the LHC.

Backup

Log-Likelihood Ratio Distributions

Visualizing the Excess

- Display all input histogram bins ordered according to S/B in one plot.
- The background model has been constrained by the data.

CDF and DØ Individual Results

Observed 95% CL exclusion:

 $90 < m_H < 102 \text{ GeV}, 149 < m_H < 172 \text{ GeV}$

At $m_H = 125 \text{ GeV}$:

Exp. limit: 1.46 x SM Obs. limit: 2.89 x SM

Observed 95% CL exclusion:

 $90 < m_H < 101 \text{ GeV}, 157 < m_H < 178 \text{ GeV}$

At $m_H = 125 \text{ GeV}$:

Exp. limit: 1.68 x SM Obs. limit: 2.92 x SM

Final Tevatron Combined Results

- Expected exclusion: $90 < m_H < 120 \text{ GeV}$, $140 < m_H < 184 \text{ GeV}$ Observed exclusion: $90 < m_H < 109 \text{ GeV}$, $149 < m_H < 182 \text{ GeV}$
- 95% CL limit at m_H=125 GeV: 1.06xSM (expected), 2.44xSM (observed)

Quantifying the Excess: p-values

Local p-value distribution for background-only hypothesis:

• Minimum local p-value at $m_H=120$ GeV: 3.1σ (2.0σ expected) p-value at $m_H=125$ GeV: 3.0σ (1.9σ expected)

Mass

Mass has already been measured to better than 0.5%.

ATLAS: $m_H = 125.5 \pm 0.2(stat.) + 0.5/-0.6(syst)$ GeV

CMS: $m_H = 125.3 \pm 0.4(stat.) \pm 0.5(syst)$ GeV

$$M_H^{fit} = 126.2_{-7.8}^{+8.1} \text{ GeV}$$

Probing Higgs Boson Couplings

- Several production and decay mechanisms contribute to signal rates per channel
 - → interpretation is difficult
- A better option: measure deviations of couplings from the SM prediction (*arXiv:1209.0040*). Basic assumptions:
 - there is only one underlying state at m_H~125 GeV,
 - it has negligible width,
 - it is a CP-even scalar (only allow for modification of coupling strengths, leaving the Lorentz structure of the interaction untouched).

Additional assumption made in this study:

- no additional invisible or undetected Higgs decay modes.
- Under these assumptions all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors to the SM Higgs couplings. Examples:

$$\sigma(gg \to H)BR(H \to WW) = \sigma_{SM}(gg \to H)BR_{SM}(H \to WW) \frac{\kappa_g^2 \kappa_W^2}{\kappa_H^2}$$

$$\sigma(WH)BR(H \to bb) = \sigma_{SM}(WH)BR_{SM}(H \to bb) \frac{\kappa_W^2 \kappa_b^2}{\kappa_H^2}$$

$$\kappa_g = f(\kappa_t, \kappa_b, M_H)$$

$$\kappa_H = f'(\kappa_t, \kappa_b, \kappa_\tau, \kappa_W, \kappa_Z, M_H)$$