Alcap Analyis Code Summary

Ben Krikler Imperial College London 27th February 2014

Overview

- General approach
- Analysis so far
- What we need / want
- Offline Analysis (Rootana)
 - Where we're at
 - What needs doing

Overall approach

MIDAS

- Experiment
- Collects data
- Binary format with headers and data structures that we define for each channel

Alcapana

- Unpacks midas data to root tree
- Some semi-online histogramming

Rootana

- Full offline analysis
- Only ROOT (no Midas)

Online-display

• GUI for alcapana histograms

Analysis so far: Online

Analysis so far: Nam

- Max-bin methods for pulse amplitude (in rootana)
- EvdE module
- Simple Ttree::Draw + cuts

From Nam's talk on Tuesday

Aims

- Need some real checks for data quality
- Want to see the proton distribution + rate
- Want to know rates for all particles (PID, dEvsE)
- Need x-ray spectrum and integration of peak for normalisation
- Lifetimes of these processes as cross-check that we understand their source
- Neutron spectrum (?)

Planned Rootana structure

(Planned) Rootana structure

(Planned) Rootana structure

	 TAnalysedPulse Amplitude, time, energy, pedestal Book-keeping: generator, TPI (pointer, ID) 		\rightarrow All waveform analysis			
			finishe	d (in p	rinciple)	
	TDetecto		orPulse		\rightarrow One event in a	
		AP (may be NULL) AP (may be NULL) he, amplitude etc he of the TAPs		detector		
 Is this ok?What have I missed?			 TMuonEvent One MuSc pulse A list of TDetectorPulses for each detector that occurred in 			
					MuSc pulse of TDetectorPulses for detector that occurred in	
Be <u>n</u> k	Krikler	→One the c	event in chamber	this N Othe until 	JuSc window r information for cuts (time next muon event etc)	

(Planned) Rootana structure

FindPulses

• Confirm there is a pulse

MakeAnalysedPulses

• Extract all information from waveform

MakeDetectorPulses

 Organise information for each physics event in one detector

MakeMuonCentredEvent

 Organise information for one muon event

- In: TPulseIslands
- Out: TPulseIslands
- In: TPulseIslands
- Out: TAnalysedPulses
- In: TAnalysedPulses
- Out: TDetectorPulses

- In: TDetectorPulses
- Out: TMuonEvents

Rootana manager

Accessing analysis objects:

- Singleton manager available from anywhere (replaces global pointers)
- Keep a list of TAnalysedPulses
 - One vector per midas event per channel
- Keep a list of TDetectorPulses
 - One vector per midas event per detector
- Keep a vector of TMuonEvents
 - One vector per midas event per chamber
- Controls writing objects to file

Book-keeping

- Do we use the same 'manager' ?
- TSetupData would be merged into this?
- Analysis options, types of generator etc

Current Rootana Modules

Name	Purpose	Status
AnalysePulseIsland	Get pulse height + timing	Remove
CheckCoincidence	Histograms (code all commented out)	Remove ?
CoincidenceCut	Pair up pulses from two channels	Make into TDP generator
CreateDetectorPulses	Old version of MakeDetectorPulses	Remove
DeadTimeGe	Histogram difference in time of each germanium pulse	Upgrade
EvdE	Make E vs dE plot, uses TAPs	Upgrade, use TMuonEvents
Lifetime	Histogram, lifetime of particles with certain energy	Upgrade, use TMuonEvents

Current Rootana Modules

Name	Purpose	Status
MakeAnalysedPulses	Run TVAnalysedPulseGenerator	New, tested
MakeDetectorPulses	Run TVDetectorPulseGenerator	New, not tested
MakeMuonEvents	Run TVMuonEventGenerator	Old, needs rewriting
MyModule	Example module	Remove ?
Normalization	Count MuSc hits above a threshold	Upgrade
PlotAmplitude	Histrogram pulse amplitudes	Optimise
PlotAmpVsTDiff	Time shift histogram	Optimise
PlotTime	Histogram pulse times	Optimise
SimpleHistograms	Histogram number of pulses and number of coincidence events	Optimise
SiR2Target	Histogram energy deposit in silicon detectors	Check, optimise

Summary

- Intended structure:
 - Analyse the waveforms
 - Correlate pulses within a detector
 - Correlate events to each muon
- To do:
 - Data Manager need to implement, remove global pointers, ability to store data in root file
 - Make sure our book-keeping is set-up: All inputs and options should be recorded (along-side data, file-hashes, filenaming conventions etc?)
 - Finish basic generators and structure

Run settings

- Problem:
 - Wrong values for certain wiremap fields
 - Some fields missing
- ODB contains:
 - Fixed online configurations (used by DAQ)
 - Offline values (not used by DAQ), that could be wrong online (=> changed offline)

Detector names, trigger polarities, time shifts
 Need to know exactly where this information comes from to trust analysis