FADC: overview and performance

Joe Grange ANL 3/24/14

Outline

- Gaining familiarity with FADC system
 - (growing pains)
- Quality control and utility in data analysis

Early troubles

- Early FADC sanity check: inject pulser signal to two systems
 - MCA. Mostly standalone program with various benefits/drawbacks.
 - FADC. Data collected by MIDAS, analyzed by user modules.

 Obvious difference between two methods: many steps between hardware and results for FADC.
 Andy, Ben and I spent much time w/ MIDAS blocks and deadtime

 Immediate rate discrepancy (~30% in this case!)

Early troubles

- Deadtime structure important to understand observed rates, but problem remained.
 - chosen structure: 110ms \uparrow , 10ms \downarrow = 8% deadtime.
- Ben had the great idea to measure the up-time using coincidence/anticoincidence using scaler
 - still didn't do it, but continuing to learn valuable info: ~14% measured deadtime from MIDAS

Early troubles solved

- Have control sample! Looked to correlate pulses observed in CAEN with FADC (when were lost pulses lost?).
 - Andy developed lots of timing analysis modules helpful for later beam/data correlations
- Simple software bug discarded final pulse in each MIDAS block, in its place created stubby four-sample pulses.

 Fred Gray provided the overseas assist, also provided us with updated FADC firmware (unrelated to these issues)

FADC resolution

• With fixed pulser, discrepancy between FADC and MCA resolution:

	Sigma	Mean	Sigma / Mean
MCA	66.03 keV	1508.98 keV	0.044
FADC	19.67	786.1	0.025

Ultimately not understood...

Monday, March 24, 14

100

60

2600

Calibrations

SiL1-1

Constrain FADC response with known radioactivity

Integral 1.243e+04 χ² / ndf 91.12/81 α 's from Constant 104 ± 2.3 Mean 2951 ± 1.5 Am241 Sigma 26.86 ± 0.75 117.3 keV @ 5484 keV 2900 3000 3100 3200

Plot of the pulse heights in the NoSO channel

Noise

FADC's very noisy early on

Noise

- Suspected bad power supply swapped before serious beam runs. Changed to 120A MuSun power supply.
- Updated pulse shapes:

			Detector connected			
Board	channel	mean (ch)	sigma (ch)	FWHM (keV)	sigma (ch)	FWHM (keV)
x80	SiL-2	132.9	1.45	25.75	4.2	74.58
x80	SiR-2	151.0	1.91	29.87	2.6	40.64
x82	SiL-1-1	281.3	1.68	14.09	6.60	55.37
x82	SiL-1-2	278.9	1.56	13.20	11.3	95.62
x82	SiL-1-3	289.2	1.62	13.22	11.6	94.66
x82	SiL-1-4	295.0	1.66	13.28	29	232.00

.....

Misc issues encountered

- Many, many MIDAS crashes and errors mysteriously solved by reloading .odb file from most recent successful run + much patience (power cycling)
- More serious FADC frontend crashes req'd DAQ reboots

- Cable woes
 - wiggling caused dramatic changes in signal/noise
 - damage prevented any signal transmission
 - ethernet connection to DAQ not secure

- Gaining familiarity with FADC system
 (growing pains)
- Quality control and utility in data analysis

.......

.

FADC package losses

- Fred's updated firmware reports when internal FPGA buffer is full (and so data may be missed), very useful tool for real-time diagnostics
- PeterW added monitoring capabilities to FADC frontend:
 - as well as a FADC timeout message, indicating not all packages collected were sent
- Both these are stored in MIDAS banks, we choose how to handle at the analysis stage
 (have we decided?)

new_fadc_read												
Board	Øx81:	start	16070	(+)	-	stop	16124	(+)	-	buffer	full	(+)
Board	Øx82:	start	16072	(+)	-	stop	16125	(+)	-	buffer	full	(+)

FADC package losses

- Early on, bug in online monitoring root scripts prevented proper package loss monitoring
- When fixed, realized rates were (and presumably had been) too high (~30%)
 - unacceptable losses, combatted with increased thresholds, shortened def'n of pulse island.

I see quantification of these rates with run numbers as a next step for myself (would this duplicate any efforts?)

Summary, next steps

- FADC system proved particularly sensitive and temperamental early on, smooth running reached when it counted
 - software bug
 - noise (power supply)
 - some troublesome cabling
- Track FADC packet losses/buffer health through physics runs to begin quantifying data/analysis confidence