

Neutron Emission after µ Capture

A Study of Neutron Emission in AlCap

Ed Hungerford for the AlCap Collaboration

Argonne National Laboratory, Boston Univ., Brookhaven National Laboratory, Fermi National Accelerator laboratory, Univ. Houston, Imperial College, Univ. Massachusetts, Osaka, Univ., University College, Univ. Washington

1) Measure the rate and energy spectrum of charged particle emission with 5% precision for energies greater than ~2.5 MeV.

Proton emission dominates the single hit rates in the tracking chambers.

2) Measure the rate and spectrum of neutron emission for neutrons between a few MeV and ~15MeV.

Neutrons cause significant backgrounds in all detector systems

3) Measuer muonic x-rays after µ capture

Atomic x-ray emission is a proposed technique to determine the number of muon stops in order to normalize the Mu2e branching ratio

Relevance to the Mu2E Experimental Measurement

Neutron SEU

An estimate of the SEU in various FPGA's using information of the test in the **iRoC report**

1 Neutron Background at the standard NYC latitude 40.7° N (Sea-Level) \rightarrow 14 n/hr/cm² \rightarrow 3.9 x10⁻³ n/s/cm²

2 1 FIT = 1 failure in 10⁹ hrs \rightarrow 2.4 x 10⁻⁸ failure/day

3 Neutron Rate in the Tracker \rightarrow 5 x 10⁴ n/s/cm²

4 Neutron Rate/Sea-Level Rate \rightarrow 1.3 x 10⁻⁷

The above assumes no error correction, but this may take a number of clock cycles. Also note that the iRoC report does not include functional interrupts and transients due to ionizations or radiation damage.

FPGA	Measured FIT Sea Level	Scaled FIT Tracker	Failure/Day	Failure/day 300 FPGA	Failure/hr 300 FPGA
Actel	<0.04	<5.2x10 ⁵	<0.01	<3.6	
Xilinx XC 351000	320	4.2x10 ⁹	100	3.0x10 ⁴	1300
Altera	460	6.0x10 ⁹	144	4.3x10 ⁴	1800

Mu2e

e

MyeongJae Lee (LBNL) Mu2e Soft/Sim meeting, Jan 10, 2012

- Estimating Neutron flux is important to the Tracker electronics radiation hardness.
 - Fast neutron is an important source of Single Electron Upset (and subsequent failure) in the real time operation of electronics system.
- Target Tolerance level
 - = 1 [reset of all electronics] / day
 - = 64 / 21600 reset/day/chip = 3x10⁻⁸ reset/sec/chip
 - This means we can endure DAQ recycling once a day. Channel/chip ratio not decided yet.
- Lifetime of exp (including duty rate) = $4x10^7$ sec
- Life time neutron dose (all energy) = 2x10¹² n/cm²
 - Obtained from Mu2eG4. Muon capture neutrons are dominant.

(x10 ¹⁰ n/cm2)	Thermal (KE <1eV)	Epithermal (1eV <ke<1mev)< th=""><th>Fast (KE>1MeV)</th></ke<1mev)<>	Fast (KE>1MeV)
Muon capture	15.9	76.9	103
MBS	0.198	1.56	0.785
Beam Flash	0.240	1.28	1.56
Production Solenoid	0.561	0.087	0.00

Mu2e

SiPM Radiation Damage Mu2e-doc-db 3213

After 10¹³ thermal n/cm² the SiPM QE drop is small but an increase of the SiPM's dark count rate is significant.

At room temperature individual PEs will be difficult to resolve after 10^{13} thermal n/cm² (which is equivalent to 10^{10} - 10^{11} of 1 MeV neutrons/cm²). The SiPM's dark count increase is expected to be around 10-100 MHz/mm² at room temperature. The SiPM's dark count rate drops ~2 times per 10 C.

FLUKA MC Simulations

Muon Capture

An exotic source of neutron background (e.g., background at nTOF) Basic weak process : $\mu^- + p \rightarrow \nu_\mu + n$ μ^- at rest + atom \rightarrow excited muonic atom \rightarrow x-rays+g.s muonic atom Competition between μ decay and μ capture by the nucleus. In FLUKA: Goulard-Primakoff formula $\Lambda_c \propto Z_{eff}^4$, calculated Z_{eff} , Pauli blocking from fit to data. $\frac{\Lambda_c}{\Lambda_d} = 9.2 \cdot 10^{-4}$ for H, 3.1 for Ar, 25.7 for Pb Nuclear environment (Fermi motion, reinteractions, deexcitation...) from the FLUKA intermediate-energy module PEANUT Slow projectile, low energy transfer (neutron E=5 MeV on free p) Experimentally: high energy tails in n-spectra Beyond the simple one-body absorption Good results from addition of two-nucleon absorption

MU2e

3/24/14

Simulation Sta	tistics
Al Targe	t
Ratio	Value(%)
Decay/µ-stop	26
Capture/µ-stop	74
Proton/Neutron	24
0 Neutron/ μ-stop	29
1 Neutron/ μ-stop	39
2 Neutron/ µ-stop	4.5
3 Neutron/ µ-stop	0.18
4 Neutron/ μ-stop	0.00072
5 Neutron/ µ-stop	0.00003
Total Neutron/ µ-stop	44
Avg. Neutron/ μ-stop	*1.18
*Number not	%

Previous Experimental Measurements

3/24/14

Neutron Emission from µ-Capture on ¹⁶O leading to Giant Resonance Excitation Data and Model comparison

Giant Resonance Excitation In Neutron Emission

Gamow-Teller Transitions

A Gamow–Teller transition 1s, fundamentally, a type of β decay in which the spin vectors of the released electron and electron antineutrino are parallel. In contrast, a Fermi transition is a β decay in which the spin vectors of the released electron and electron antineutrino are anti-parallel.

In terms of the interaction Hamiltonian, the probability amplitude from parent to daughter nucleus in a beta-decay forms 2 possible final states: [1]

$$\hat{H}_{\text{int}} = \begin{cases} \hat{1}\hat{\tau} & \text{Fermi decay} \\ \hat{\sigma}\hat{\tau} & \text{Gamow-Teller Decay} \end{cases}$$

 $\hat{\tau}$ = isospin transition matrix which turn protons to neutrons and vis-versa

 $\hat{\sigma}$ = rotation matrix which changes parent nucleus parity from 0 \rightarrow 1.

19

Count Rates

Contribution	Rate or ratio	
Mu-beam/s	104	
Mu-stop/s Thick Target	~104	
Capture/Mu-stop	0.74	
<pre># single n/Mu-stop</pre>	0.39	
Detector $\Delta\Omega$	0.016	
Detector Efficiency	0.25	
Neutron Attenuation	0.4	
# Detectors	2	
Single Neutron/s	92	
Ratio (N/peak)/Total N	0.03	
Counts in Peak/s	0.3	