Physics case for long-baseline oscillation measurements:

Stephen Parke Fermilab

Nu Standard Model:

Fractional Flavor Content varying $\cos \delta$

$$\begin{split} \delta m_{sol}^2 &= +7.6 \times 10^{-5} \ eV^2 & \sin^2 \theta_{12} \sim \frac{1}{3} \\ |\delta m_{atm}^2| &= 2.4 \times 10^{-3} \ eV^2 & 0 \leq \delta < 2\pi & \sin^2 \theta_{23} \sim \frac{1}{2} \\ |\delta m_{sol}^2| / |\delta m_{atm}^2| &\approx 0.03 & \sin^2 \theta_{13} \sim 0.02 \end{split}$$

Except: LSND, miniBooNE, reactor anomaly, gallium anomaly.

Stephen Parke, Fermilab

5/28/2014

Quark Triangle:

Quark Triangle:

Neutrino Triangle:

$$U_{\mu 1}^* U_{e1} + U_{\mu 2}^* U_{e2} + U_{\mu 3}^* U_{e3} = 0$$

only Unitarity triangle that doesn't involve ν_{τ} !

 $|J| = 2 \times \mathcal{A}rea$

 $|U_{e1}||U_{\mu 1}| = 0.0 - 0.5; \ |U_{e2}||U_{\mu 2}| = 0.2 - 0.4; \ |U_{e3}||U_{\mu 3}| = 0.1(1 \pm 0.2)$

 $|U_{e1}||U_{\mu 1}| = 0.0 - 0.5; \ |U_{e2}||U_{\mu 2}| = 0.2 - 0.4; \ |U_{e3}||U_{\mu 3}| = 0.1(1 \pm 0.2)$

How to measure $|U_{\mu 1}|^2$ and $|U_{\mu 2}|^2$ separately ? ? ?

 $|U_{e1}||U_{\mu 1}| = 0.0 - 0.5; |U_{e2}||U_{\mu 2}| = 0.2 - 0.4; |U_{e3}||U_{\mu 3}| = 0.1(1\pm0.2)$

How to measure $|U_{\mu 1}|^2$ and $|U_{\mu 2}|^2$ separately ? ? ?

Neutrino Factory to detector in geo-synchronous orbit ! ! !

<u>Unanswered Questions !</u> ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm^2_{31} ?
- Is ν_3 more ν_{μ} or more ν_{τ} : $|U_{\mu3}|^2 > \text{or} < |U_{\tau3}|^2$ or $\theta_{23} > \text{or} < \pi/4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: m_{lite}

Unanswered Questions !

ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm^2_{31} ?
- Is ν_3 more ν_{μ} or more ν_{τ} : $|U_{\mu3}|^2 > \text{or} < |U_{\tau3}|^2$ or $\theta_{23} > \text{or} < \pi/4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: m_{lite}

Stephen Parke, Fermilab

5

Credibility of Leptogenesis !!

Unanswered Questions!

ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm^2_{31} ?
- Is ν_3 more ν_{μ} or more ν_{τ} : $|U_{\mu3}|^2 > \text{or} < |U_{\tau3}|^2$ or $\theta_{23} > \text{or} < \pi/4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: *m_{lite}*

Beyond ν Standard Model

- What is the mass of the Sterile Neutrinos: light? or Superheavy?
- What is the size of Non-Standard Interactions?
- Where are the True Surprises?

eptogenesis !!

Unanswered Questions !

ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?] Credibility of
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm^2_{31} ?
- Is ν_3 more ν_{μ} or more ν_{τ} : $|U_{\mu3}|^2 > \text{or} < |U_{\tau3}|^2$ or $\theta_{23} > \text{or} < \pi/4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: *m_{lite}*

Beyond ν Standard Model

- What is the mass of the Sterile Neutrinos: light? or Superheavy?
- What is the size of Non-Standard Interactions?
- Where are the True Surprises?

.eptogenesis !!

Leptons v Quarks:

$$V_{CKM} \sim \begin{pmatrix} 1 & 0.2 & _{0.001} \\ 0.2 & 1 & 0.01 \\ _{0.001} & 0.01 & 1 \end{pmatrix}$$

Very Different !!!

Flavors & quark-lepton unification

Quarks CKM matrix = 1 + (Cabibbo) effects

Leptons' MNSP matrix = X + (Cabibbo?) effects Contains two large angles

Cabibbo effects as deviation from X

example: $\theta_{13} \simeq \theta_c / \sqrt{2}$ deviation from zero?

speculate:
$$\theta_{atm} \simeq \pi/4 + O(\theta_c)$$
 deviation from $\pi/4$?

<u>Masses & Mixings (conti.)</u>

	Quark-Lepton Co	mplementarity	$\theta_{12} + \theta_C = 45^o$
	Solar sum rules	Bimaximal	$\theta_{12} = 45^o + \theta_{13} \cos \delta$
	Plus HO	Tri-bimaximal	$\theta_{12} = 35^o + \theta_{13} \cos \delta$
	corrections	Golden Ratio	$\theta_{12} = 32^o + \theta_{13} \cos \delta$
۵	Atm. sum rules	Tri-bimaximal- Cabibbo	$\theta_{12} = 35^{o} \ \theta_{23} = 45^{o} \\ \theta_{13} = \theta_C / \sqrt{2} = 9.2^{o}$
	Plus Charged	Trimaximal1	$\theta_{23} = 45^o + \sqrt{2}\theta_{13}\cos\delta$
	Lepton Corrections	Trimaximal2	$\theta_{23} = 45^o - \frac{\theta_{13}}{\sqrt{2}}\cos\delta$
	Now that $ heta_{13}$ is	measured these	e predict $\cos \delta$

Given this end game:

Given this end game:

Deduce the rules of chess!!!

MAP Spring 2014 @ Fermilab

Given this end game:

Deduce the rules of chess!!!

theorists need more hints !

MAP Spring 2014 @ Fermilab

Precision Measurements:

Appearance Experiments:

- First Row: Superbeams where u_e contamination ${\sim}1~\%$
- Second Row: ν -Factory or β -Beams, no beam contamination

$$u_{\tau}$$
 at Neutrino Factory

$$\begin{array}{c} \mathcal{V}_{\mu} \rightarrow \mathcal{V}_{e} \\ \text{Nacuum} \\ \mathcal{P}_{\mu \rightarrow e} \approx |\sqrt{P_{atm}}e^{-i(\Delta_{32}\pm\delta)} + \sqrt{P_{sol}} |^{2} \\ \downarrow \\ \Delta_{ij} = \delta m_{ij}^{2}L/4E \\ \text{Where } \sqrt{P_{atm}} = \sin\theta_{23}\sin2\theta_{13} \sin\Delta_{31} \end{array}$$

and $\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \sin \Delta_{21}$

$$\begin{array}{cccc}
\mathcal{V}_{\mu} \longrightarrow \mathcal{V}_{e} \\
\text{Vacuum} \\
\mathcal{P}_{\mu \to e} \approx |\sqrt{P_{atm}}e^{-i(\Delta_{32}\pm\delta)} + \sqrt{P_{sol}}|^{2} \\
 \Delta_{ij} = \delta m_{ij}^{2}L/4E & \text{CP violation }!!! \\
\text{where } \sqrt{P_{atm}} = \sin\theta_{23}\sin2\theta_{13}\sin\Delta_{31} \\
 and \sqrt{P_{sol}} = \cos\theta_{23}\sin2\theta_{12}\sin\Delta_{21} \\
\end{array}$$

$$\begin{array}{c}
\mathcal{P}_{\mu \to e} \approx P_{atm} + 2\sqrt{P_{atm}P_{sol}}\cos(\Delta_{32}\pm\delta) + P_{sol} \\
 \text{only CPV} \\
 \cos(\Delta_{32}\pm\delta) = \cos\Delta_{32}\cos\delta\mp\sin\Delta_{32}\sin\delta
\end{array}$$

 $\Delta P_{cp} = 2 \sin \delta \sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \cos \theta_{13} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

Stephen Parke, Fermilab

5/28/2014

1st Oscillation Maximum

At 1st Oscillation Maximum: $\Delta_{31} = \pi/2$:

In vacuum,

Reactor:

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \pm P(\nu_{\mu} \to \nu_{e}) = \begin{cases} 2 \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \implies \theta_{23} \text{ "octant"} \\ \frac{\pi}{30} \sin \delta J_{r} & CPV \end{cases}$$

where $J_r = \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \approx 0.3$

1st Oscillation Maximum

At 1st Oscillation Maximum: $\Delta_{31} = \pi/2$:

In vacuum,

Reactor:

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \pm P(\nu_{\mu} \to \nu_{e}) = \begin{cases} 2 \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \implies \theta_{23} \text{ ``octant''} \\ \frac{\pi}{30} \sin \delta J_{r} & CPV \end{cases}$$

where $J_r = \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \approx 0.3$

In Matter:

- sum, corrections are small matter*CPV ! ! !
- difference can give Mass Hierarchy,

if matter effects large enough and/or δ favourable

Current Experiments:

• Near 1st Oscillation Maximum: L/E= 500 km/GeV

Off Axis beams:

T2K L=295km, $\langle E \rangle = 0.65$ GeV, 2.5°

NO ν A: L=810km, $\langle E \rangle = 2.0$ GeV, 14 mrad

Stephen Parke, Fermilab

5/28/2014

<u>NOvA</u>

1 and 2 σ Contours for Starred Point

Stephen Parke, Fermilab

5/28/2014

T2K + NOvA, Neutrino Only, $\sin^2 2\theta_{13} = 0.01, 0.02, ..., 0.1$ T2What wabout 260mbining zet 2Kinand = NOvAPCC)

NOvA: 6.5e2001767591051yrs, 30 kton, 24%

rohe

Future Experiments:

• Near 1st Oscillation Maximum: L/E = 500 km/GeV

T2HK L=295km, $\langle E \rangle = 0.65$ GeV, off axis 2.5°

LBNE: L=1300km, E = 1 to 5 GeV, broad band beam

LENF L=1300km $\langle E \rangle = 2.5 \text{ GeV}$

• Near the 2nd Oscillation Maximum: L/E = 1500 km/GeV

ESS to Garpenberg (540km) E= 200 to 400 MeV, broad band beam LBNE:

@ same L/E as NOvA

Stephen Parke, Fermilab

<u>CPV & Neutrino Anti-Neutrino Asymmetry:</u>

In Vacuum, at 1st Oscillation Maximum:

$$A_{vac} \equiv rac{|P - ar{P}|}{|P + ar{P}|} pprox rac{1}{11} rac{\sin 2 heta_{13} \sin \delta}{(\sin^2 2 heta_{13} + 0.002)} = 0.3 \; \sin \delta$$

 $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ ranges is between $\frac{1}{2}$ and 2 times $P(\nu_{\mu} \rightarrow \nu_{e})$!!!

Stephen Parke, Fermilab

5/28/2014

TABLE I. Detector parameters of the baseline design.

Mass Hierarchy:

Detector type		Ring-imaging water Cherenkov detector
Candidate site	Address	Tochibora mine
		Kamioka town, Gifu, JAPAN
	Lat.	$36^{\circ}21'08.928''N$
	Long.	$137^{\circ}18'49.688''E$
	Alt.	508 m
	Overburden	648 m rock (1,750 m water equivalent)
	Cosmic Ray Muon flux	$1.0\sim 2.3\times 10^{-6}~{\rm sec^{-1}cm^{-2}}$
	Off-axis angle for the J-PARC	$\nu~2.5^\circ$ (same as Super-Kamiokande)
	Distance from the J-PARC	$295~\mathrm{km}$ (same as Super-Kamiokande)
Detector geometry	Total Volume	0.99 Megaton
	Inner Volume (Fiducial Volume) $0.74 \ (0.56)$ Megaton
	Outer Volume	0.2 Megaton
Photo-multiplier Tubes Inner detector		99,000 20-inch ϕ PMTs
		20% photo-coverage
	Outer detector	25,000 8-inch ϕ PMTs
Water quality	light attenuation length	> 100 m @ 400 nm
	Rn concentration	$< 1 \text{ mBq/m}^3$

For $\sin^2 2\theta_{13} = 0.1$, the mass hierarchy can be determined with more than 3σ significance for 46% of the δ parameter space.

쁐

MAP Spring 2014 @ Fermilab

5/28/2014

LBNE

LBNE original

• LBNE:

- Beamline @ Fermilab: 1-5 GeV, 700 kW ---> 2.1 MW
- Baseline: 1300 km on-axis, Fermilab to Homestake
- Detector: 34 ktons LAr @ 4300 mwe in Homestake

2nd Oscillation Max:

 $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ ranges is between $\frac{1}{7}$ and 7 $P(\nu_{\mu} \rightarrow \nu_{e})$

Appearance Probabilities more dynamic near 2nd Osc. Max. than 1st. OM

Stephen Parke, Fermilab

MAP Spring 2014 @ Fermilab

Detector: 500kt WC, MEMPHYS

Stephen Parke, Fermilab

How to add a neutrino facility?

- 2 GeV protons: ~300 MeV neutrinos
- No perturbation of the neutron facility
- Close technical collaboration at early stage
- Acceptable cost
- Linac modifications:
 - double the rate (14 Hz → 28 Hz), one pulse for neutrinos and one pulse for neutrons (5 MW each)
 - additional RF power to drive the two beams (for neutrons and neutrinos)
 - install upgradable power sources
 - or double the power sources (free space has to be foreseen since now)

• For a fraction of the cost we can get a 5MW proton driver for Neutrino Physics

- LBNE: 5+5 years, 0.7 MW, 10/35 kt LAr
- T2HK: 3+7 years, 0.75 MW, 500 kt WC (5%/10% syst. errors)
- SPL: 2+8 years, 4 MW, 500 kt WC (130 km, 5%/10% syst. errors)
- ESS: 2+8 years, 5 MW, 500 kt WC (2 GeV, 360/540 km, 5%/10% syst. errors)
- C2Py: 20/100 kt LAr, 0.8 MW, 2300 km

another possibility: Daedalus

nu_mu Disappearance:

 $\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.975$ $\sigma_{\mu\mu} = 1.4\%$ Coloma, Minakata and Parke arXiv:2014.???

Generalized Intrinsic Degeneracy: (Coloma, Minakata and SP)

Assume θ_{13}, θ_{23} and δ unknown:

 $\nu_e \text{-Appearance}$ $P(\nu_{\mu} \rightarrow \nu_e) \text{ and } P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e)$ $P(\nu_{\mu} \rightarrow \nu_e) \text{ and } P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e)$

 $\delta =$ 60, 70, 80, 90, 100, 110, 120 degrees

Generalized Intrinsic Degeneracy: (Coloma, Minakata and SP)

Assume θ_{13}, θ_{23} and δ unknown:

 $\delta = 60, 70, 80, 90, 100, 110, 120 \text{ degrees}$

Generalized Intrinsic Degeneracy: (Coloma, Minakata and SP)

Assume θ_{13}, θ_{23} and δ unknown:

 $\delta = 60, 70, 80, 90, 100, 110, 120 \text{ degrees}$

Spectral information can help break this degeneracy

Uncertainty on Theta23 for NF:

Coloma, Minakata and Parke arXiv:2014.???

Non-Standard Interactions:

Conclusions:

• To Be Majorana or Not To Be Majorana?

• We know $(|U_{e2}|^2, |U_{e3}|^2, |U_{\mu3}|^2)$ with precision of (5,10,15)% but have little information on the other 6 elements of the PMNS matrix without assuming Unitarity. Stringent tests of the ν SM Paradigm needed.

• Determining the Mass Hierarchy & measuring CPV are the next steps. Tau's?

• m_{lite} , if $\ll \delta m_{21}^2$, a new scale to explain !

Conclusions:

• To Be Majorana or Not To Be Majorana?

• We know $(|U_{e2}|^2, |U_{e3}|^2, |U_{\mu3}|^2)$ with precision of (5,10,15)% but have little information on the other 6 elements of the PMNS matrix without assuming Unitarity. Stringent tests of the ν SM Paradigm needed.

• Determining the Mass Hierarchy & measuring CPV are the next steps. Tau's?

• m_{lite} , if $\ll \delta m_{21}^2$, a new scale to explain !

• Are there lite Sterile neutrinos? Can we exclude $|U_{e4}|^2$ and $|U_{\mu4}|^2 > 0.01$, say, for $\delta m^2 \sim 1 eV^2$

 Solving the Neutrino Masses and Mixing pattern is difficult challenge for Theory! Need hints.

• Where are there further "SURPRISES" in the Neutrino Sector?

We haven't got the money,

so we'll have to think!

E. Rutherford