Physics case for long-baseline oscillation measurements:

Stephen Parke
Fermilab

Nu Standard Model:

Fractional Flavor Content varying $\cos \delta$

$$
\begin{array}{ll}
\delta m_{\text {sol }}^{2}=+7.6 \times 10^{-5} \mathrm{eV}^{2} & \\
\sin ^{2} \theta_{12} \sim \frac{1}{3} \\
\left|\delta m_{\text {atm }}^{2}\right|=2.4 \times 10^{-3} \mathrm{eV}^{2} & 0 \leq \delta<2 \pi \\
\left|\delta m_{\text {sol }}^{2}\right| /\left|\delta m_{a t m}^{2}\right| \approx 0.03 & \sin ^{2} \theta_{23} \sim \frac{1}{2} \\
\sin ^{2} \theta_{13} \sim 0.02
\end{array}
$$

Except: LSND, miniBooNE, reactor anomaly, gallium anomaly.

Neutrino Mixing Matrix: PMNS

Neutrino Mixing Matrix: PMNS

Neutrino Mixing Matrix: PMNS

Neutrino Mixing Matrix: PMNS

Neutrino Mixing Matrix: PMNS

Quark \& Iepton Unitarity Triangles:

Quark Triangle:

Quark \& lepton Unitarity Triangles:

Quark Triangle:

Neutrino Triangle:

$$
U_{\mu 1}^{*} U_{e 1}+U_{\mu 2}^{*} U_{e 2}+U_{\mu 3}^{*} U_{e 3}=0
$$

only Unitarity triangle that doesn't involve ν_{τ} !

$$
|J|=2 \times \text { Area }
$$

$$
\left|U_{e 1}\right|\left|U_{\mu 1}\right|=0.0-0.5 ;\left|U_{e 2}\right|\left|U_{\mu 2}\right|=0.2-0.4 ;\left|U_{e 3}\right|\left|U_{\mu 3}\right|=0.1(1 \pm 0.2)
$$

Quark \& lepton Unitarity Triangles:

Quark Triangle:

Neutrino Triangle:

$$
U_{\mu 1}^{*} U_{e 1}+U_{\mu 2}^{*} U_{e 2}+U_{\mu 3}^{*} U_{e 3}=0
$$

only Unitarity triangle that doesn't involve ν_{τ} !

$$
|J|=2 \times \text { Area }
$$

$$
\left|U_{e 1}\right|\left|U_{\mu 1}\right|=0.0-0.5 ;\left|U_{e 2}\right|\left|U_{\mu 2}\right|=0.2-0.4 ;\left|U_{e 3}\right|\left|U_{\mu 3}\right|=0.1(1 \pm 0.2)
$$

How to measure $\left|U_{\mu 1}\right|^{2}$ and $\left|U_{\mu 2}\right|^{2}$ separately ? ? ?

Quark \& lepton Unitarity Triangles:

Quark Triangle:

Neutrino Triangle:

$$
U_{\mu 1}^{*} U_{e 1}+U_{\mu 2}^{*} U_{e 2}+U_{\mu 3}^{*} U_{e 3}=0
$$

only Unitarity triangle that doesn't involve ν_{τ} !

$$
|J|=2 \times \text { Area }
$$

$$
\left|U_{e 1}\right|\left|U_{\mu 1}\right|=0.0-0.5 ;\left|U_{e 2}\right|\left|U_{\mu 2}\right|=0.2-0.4 ;\left|U_{e 3}\right|\left|U_{\mu 3}\right|=0.1(1 \pm 0.2)
$$

How to measure $\left|U_{\mu 1}\right|^{2}$ and $\left|U_{\mu 2}\right|^{2}$ separately ? ? ?
Neutrino Factory to detector in geo-synchronous orbit!!!

Unanswered Questions! ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Unanswered Questions!
 ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Unanswered Questions!
 ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion?
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Beyond ν Standard Model

- What is the mass of the Sterile Neutrinos: light? or Superheavy?
- What is the size of Non-Standard Interactions?
-Where are the True Surprises?

Unanswered Questions!
 ν Standard Model

- Nature of Neutrino: Majorana (2 comp) or Dirac (4 comp) fermion? \mathcal{Z} Credibility of
- CPV in Neutrino Sector: determination Dirac phase δ ?
- Ordering of mass eigenstates: Atmos. mass hierarchy, sign of δm_{31}^{2} ?
- Is ν_{3} more ν_{μ} or more $\nu_{\tau}:\left|U_{\mu 3}\right|^{2}>$ or $<\left|U_{\tau 3}\right|^{2}$ or $\theta_{23}>$ or $<\pi / 4$
- Majorana Phases: 2 additional phases
- Absolute Neutrino Mass: $m_{\text {lite }}$

Beyond ν Standard Model

- What is the mass of the Sterile Neutrinos: light? or Superheavy?
- What is the size of Non-Standard Interactions?
- Where are the True Surprises?

Leptons v Quarks:

$$
V_{M N S} \sim\left(\begin{array}{llll}
0.8 & 0.5 & 0.2 \\
0.4 & 0.6 & 0.7 \\
0.4 & 0.6 & 0.7
\end{array}\right) \quad V_{C K M} \sim\left(\begin{array}{ccc}
1 & 0.2 & 0.001 \\
0.2 & 1 & 0.01 \\
0.001 & 0.01 & 1
\end{array}\right)
$$

Very Different !!!

Flavors \& quark-lepton unification

Quarks CKM matrix $=1+$ (Cabibbo) effects
Leptons' MNSP matrix $=X+($ Cabibbo? $)$ effects contains two large angles

Cabibbo effects as deviation from X
example: $\quad \theta_{13} \simeq \theta_{c} / \sqrt{ } 2 \quad$ deviation from zero?
speculate: $\quad \theta_{\text {atm }} \simeq \pi / 4+O\left(\theta_{c}\right) \quad$ deviation from $\pi / 4$?

Masses \& Mixing (contr.)

- Quark-Lepton complementarity $\theta_{12}+\theta_{C}=45^{\circ}$
- Solar sum rules Bimaximal $\theta_{12}=45^{\circ}+\theta_{13} \cos \delta$

```
Plus HO corrections..
```

Tri-bimaximal $\theta_{12}=35^{\circ}+\theta_{13} \cos \delta$
Golden Ratio $\quad \theta_{12}=32^{\circ}+\theta_{13} \cos \delta$

- Atm. sum rules

Plus charged
Lepton corrections..
Tri-bimaximal- $\theta_{12}=35^{\circ} \quad \theta_{23}=45^{\circ}$
cabibbo $\quad \theta_{13}=\theta_{C} / \sqrt{2}=9.2^{\circ}$
Trimaximalı $\theta_{23}=45^{\circ}+\sqrt{2} \theta_{13} \cos \delta$
Trimaximal2 $\theta_{23}=45^{\circ}-\frac{\theta_{13}}{\sqrt{2}} \cos \delta$
Now that θ_{13} is measured these predict $\cos \delta$

Given this end game:

Stephen Parke, Fermilab

Given this end game:

Deduce the rules of chess!!!

Given this end game:

Deduce the rules of chess!!!

theorists need more hints !

Precision Measurements:

Appearance Experiments:

$$
\begin{array}{cc}
& \\
& \begin{array}{c}
\text { CP } \\
\nu_{\mu} \rightarrow \nu_{e}
\end{array} \\
\mathrm{~T} \begin{array}{c}
\hat{\Perp}
\end{array} & \begin{array}{c}
\text { CPT accoss diagonals }
\end{array} \\
& \Longleftrightarrow \\
\nu_{e} \rightarrow \nu_{\mu} & \Longleftrightarrow
\end{array}
$$

- First Row: Superbeams where ν_{e} contamination $\sim 1 \%$
- Second Row: ν-Factory or β-Beams, no beam contamination
ν_{τ} at Neutrino Factory
$\mathcal{L B L \cdot { } _ { \mu \rightarrow e }} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}$

$$
\Delta_{i j}=\delta m_{i j}^{2} L / 4 E
$$

CP violation !!!
where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \sin \Delta_{31}$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \sin \Delta_{21}
$$

$L B L^{P_{\mu \rightarrow e}} \approx\left|\sqrt{P_{\text {atm }}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{\text {sol }}}\right|^{2}$

$$
\Delta_{i j}=\delta m_{i j}^{2} L / 4 E
$$

CP violation !!!
where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \sin \Delta_{31}$ and $\sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \sin \Delta_{21}$

$$
P_{\mu \rightarrow e} \approx P_{a t m}+2 \sqrt{P_{\text {atm }} P_{s o l}} \cos \left(\Delta_{32} \pm \delta\right)+P_{s o l}
$$

$$
\cos \left(\Delta_{32} \pm \delta\right)=\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta
$$

$\Delta P_{c p}=2 \sin \delta \sin 2 \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \cos \theta_{13} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{\text {atm }}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{\text {sol }}}\right|^{2}
$$

$$
\text { where } \sqrt{P_{\text {atm }}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31}
$$

$$
\text { and } \sqrt{P_{s o l}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

Anti-Nu: Normal Inverted
For $L=1200 \mathrm{~km}$

$$
\text { dashes } \delta=\pi / 2
$$

and $\sin ^{2} 2 \theta_{13}=0.04$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
$$

$$
\text { solid } \delta=3 \pi / 2
$$

1st Oscillation Maximum

At 1st Oscillation Maximum: $\Delta_{31}=\pi / 2$:
In vacuum,

Reactor:

$P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \pm P\left(\nu_{\mu} \rightarrow \nu_{e}\right)= \begin{cases}2 \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} & \Rightarrow \theta_{23} \text { "octant" } \\ \frac{\pi}{30} \sin \delta J_{r} & C P V\end{cases}$
where $J_{r}=\sin 2 \theta_{13} \cos \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \approx 0.3$

1st Oscillation Maximum

At 1st Oscillation Maximum: $\Delta_{31}=\pi / 2$:
In vacuum,
Reactor:
$P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \pm P\left(\nu_{\mu} \rightarrow \nu_{e}\right)= \begin{cases}2 \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} & \Rightarrow \theta_{23} \text { "octant" } \\ \frac{\pi}{30} \sin \delta J_{r} & C P V\end{cases}$
where $J_{r}=\sin 2 \theta_{13} \cos \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \approx 0.3$

In Matter:

- sum, corrections are small - matter*CPV !!!
- difference can give Mass Hierarchy,
if matter effects large enough and/or δ favourable

Current Experiments:

- Near 1st Oscillation Maximum: $\mathrm{L} / \mathrm{E}=500 \mathrm{~km} / \mathrm{GeV}$ Off Axis beams:

T2K $\mathrm{L}=295 \mathrm{~km},\langle E\rangle=0.65 \mathrm{GeV}, 2.5^{\circ}$
NO $\mu \mathrm{A}: \mathrm{L}=810 \mathrm{~km},\langle E\rangle=2.0 \mathrm{GeV}, 14 \mathrm{mrad}$

T2K:

Current Experiments:

- Near 1st Oscillation Maximum: L/E = $500 \mathrm{~km} / \mathrm{GeV}$

Off Axis beams:
T2K L=295km, $\langle E\rangle=0.65 \mathrm{GeV}, 2.5^{\circ}$
NO 1 A: $\mathrm{L}=810 \mathrm{~km},\langle E\rangle=2.0 \mathrm{GeV}, 14 \mathrm{mrad}$

T2K:

$$
\theta_{\text {crit }} \approx \frac{\pi^{2}}{8} \frac{\sin 2 \theta_{12}}{\tan \theta_{23}} \frac{\delta m_{21}^{2}}{\delta m_{31}^{2}}\left(\frac{4 \Delta_{31}^{2} / \pi^{2}}{1-\Delta_{31} \cot \Delta_{31}}\right) /(a L)
$$

NOvA

1 and 2σ Contours for Starred Point

What about combining T2K and NOvA?

Neutrinos Only

Future Experiments:

- Near 1st Oscillation Maximum: $\mathrm{L} / \mathrm{E}=500 \mathrm{~km} / \mathrm{GeV}$

T2HK $\mathrm{L}=295 \mathrm{~km},\langle E\rangle=0.65 \mathrm{GeV}$, off axis 2.5°
LBNE: $\mathrm{L}=1300 \mathrm{~km}, \mathrm{E}=1$ to 5 GeV , broad band beam
LENF $\mathrm{L}=1300 \mathrm{~km}\langle E\rangle=2.5 \mathrm{GeV}$

- Near the 2nd Oscillation Maximum: $\mathrm{L} / \mathrm{E}=1500 \mathrm{~km} / \mathrm{GeV}$

ESS to Garpenberg (540km) E=200 to 400 MeV , broad band beam

LBNE:
@ same L/E as NOvA

CPV \& Neutrino Anti-Neutrino Asymmetry:

In Vacuum, at 1st Oscillation Maximum:

$$
A_{v a c} \equiv \frac{|P-\bar{P}|}{|P+\bar{P}|} \approx \frac{1}{11} \frac{\sin 2 \theta_{13} \sin \delta}{\left(\sin ^{2} 2 \theta_{13}+0.002\right)}=0.3 \sin \delta
$$

$P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ ranges is between $\frac{1}{2}$ and 2 times $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)!!!$

J-PARC+HK @ Kamioka L=295km OA=2.5deg

Future LBL plans using J-PARC

LoI: The Hyper-Kamiokande Experiment arXiv:1109.3262v1

J-PARC+LAr @ Okinoshima L=658km OA=0.78deg

J-PARC P32 (LAr TPC R\&D), arXiv:0804.2111

Current: T2K
J-PARC ~0.75MW

+ 50kt WC @ 295km 2.5º

Detector type		Ring-imaging water Cherenkov detector
Candidate site	Address	Tochibora mine
		Kamioka town, Gifu, JAPAN
	Lat.	$36^{\circ} 21^{\prime} 08.928^{\prime \prime} \mathrm{N}$
	Long.	$137{ }^{\circ} 18^{\prime} 49.688^{\prime \prime} \mathrm{E}$
	Alt.	508 m
	Overburden	648 m rock ($1,750 \mathrm{~m}$ water equivalent)
	Cosmic Ray Muon flux	$1.0 \sim 2.3 \times 10^{-6} \mathrm{sec}^{-1} \mathrm{~cm}^{-2}$
	Off-axis angle for the J-PARC ν	2.5° (same as Super-Kamiokande)
	Distance from the J-PARC	295 km (same as Super-Kamiokande)
Detector geometry	Total Volume	0.99 Megaton
	Inner Volume (Fiducial Volume)	0.74 (0.56) Megaton
	Outer Volume	0.2 Megaton
Photo-multiplier Tubes Inner detector		99,000 20-inch ϕ PMTs
		20% photo-coverage
	Outer detector	25,000 8-inch ϕ PMTs
Water quality	light attenuation length	$>100 \mathrm{~m}$ @ 400 nm
	Rn concentration	$<1 \mathrm{mBq} / \mathrm{m}^{3}$

Mass Hierarchy:

For $\sin ^{2} 2 \theta_{13}=0.1$, the mass hierarchy can be determined with more than 3σ significance for 46% of the δ parameter space.

MH from Atm Nus:

LBNE

LBNE original

- LBNE:

- Beamline @ Fermilab: 1-5 GeV, 700 kW ---> 2.1 MW
- Baseline: 1300 km on-axis, Fermilab to Homestake
- Detector: 34 ktons LAr @ 4300 mwe in Homestake

Mass Hierarchy Significance vs $\delta_{\text {CP }}$ 34kt, NH, $\theta_{13}=\mathbf{0 . 1 5 4 (4)}$

CPV Significance vs $\delta_{\text {CB }}$ 34kt, NH (IH considered), $\theta_{13}=0.154(4)$

Staging??? LBNO+LBNE=LBNU

Stephen Parke, Fermilab

2nd Oscillation Max:

ESS to Garpenburg (540km)

$A_{v a c} \approx 0.75 \sin \delta$

$$
\begin{gathered}
A_{v a c}\left(2^{\text {nd }} \mathrm{OM}\right) \approx 2.5 \quad A_{v a c}\left(1^{\text {st }} \mathrm{OM}\right) \\
(9 / 11 \text { of } 3)
\end{gathered}
$$

$P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ ranges is between $\frac{1}{7}$ and $7 P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$

Appearance Probabilities more dynamic near 2nd Osc. Max. than 1st. OM

Detector: 500kt WC, MEMPHYS

胡
Stephen Parke, Fermilab
MAP Spring 2014 @ Fermilab
5/28/2014

How to add a neutrino facility?

- 2 GeV protons: $\sim 300 \mathrm{MeV}$ neutrinos
- No perturbation of the neutron facility
- Close technical collaboration at early stage
- Acceptable cost
- Linac modifications:
- double the rate ($14 \mathrm{~Hz} \rightarrow 28 \mathrm{~Hz}$), one pulse for neutrinos and one pulse for neutrons (5 MW each)
- additional RF power to drive the two beams (for neutrons and neutrinos)
- install upgradable power sources
- or double the power sources (free space
 has to be foreseen since now)

- For a fraction of the cost we can get a 5MW proton driver for Neutrino Physics

- LBNE: $5+5$ years, $0.7 \mathrm{MW}, 10 / 35 \mathrm{kt}$ LAr
- T2HK: $3+7$ years, $0.75 \mathrm{MW}, 500 \mathrm{kt} \mathrm{WC} \mathrm{(} 5 \% / 10 \%$ syst. errors)
- SPL: $2+8$ years, 4 MW, $500 \mathrm{kt} \mathrm{WC} \mathrm{(} 130 \mathrm{~km}, 5 \% / 10 \%$ syst. errors)
- ESS: $2+8$ years, $5 \mathrm{MW}, 500 \mathrm{kt}$ WC ($2 \mathrm{GeV}, 360 / 540 \mathrm{~km}, 5 \% / 10 \%$ syst. errors)
- C2Py: 20/100 kt LAr, 0.8 MW, 2300 km
another possibility: Daedalus

Stephen Parke, Fermilab

nu_mu Disappearance:

$$
\sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right.
$$

$$
\sin ^{2} \theta_{23}^{(1)}=\sin ^{2} \theta_{\mu \mu} / \cos ^{2} \theta_{13} \approx \sin ^{2} \theta_{\mu \mu}\left(1+\sin ^{2} \theta_{13}\right)
$$

23 - Modified Octant Degeneracy:

$$
\sin ^{2} \theta_{23}^{(2)}=\cos ^{2} \theta_{\mu \mu} / \cos ^{2} \theta_{13} \approx \cos ^{2} \theta_{\mu \mu}\left(1+\sin ^{2} \theta_{13}\right)
$$

$\theta_{\mu \mu} \leq \frac{\pi}{4}$

$\sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.975$
$\sigma_{\mu \mu}=1.4 \%$

Generalized Intrinsic Degeneracy: (Coloma, Minakata and SP)

Assume θ_{13}, θ_{23} and δ unknown:

Abstract

ν_{e}-Appearance $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ and $P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$ $\delta=60,70,80,90,100,110,120$ degrees

Generalized Intrinsic Degeneracy: (Coloma, Minakata and SP)

Assume θ_{13}, θ_{23} and δ unknown:

Generalized Intrinsic Degeneracy: (Coloma, Minakata and SP)

Assume θ_{13}, θ_{23} and δ unknown:
ν_{e}-Appearance
$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ and $P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)$

$\delta=60,70,80,90,100,110,120$ degrees
ν_{μ}-Disappearance

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)
$$

Spectral information can help break this degeneracy

Uncertainty on Theta23 for NF:

Coloma, Minakata and Parke arXiv:2014.????

Stephen Parke, Fermilab

Non-Standard Interactions:

Stephen Parke, Fermilab
MAP Spring 2014 @ Fermilab

Conclusions:

- To Be Majorana or Not To Be Majorana?
- We know $\left(\left|U_{e 2}\right|^{2},\left|U_{e 3}\right|^{2},\left|U_{\mu 3}\right|^{2}\right)$ with precision of $(5,10,15) \%$ but have little information on the other 6 elements of the PMNS matrix without assuming Unitarity. Stringent tests of the $\nu \mathrm{SM}$ Paradigm needed.
- Determining the Mass Hierarchy \& measuring CPV are the next steps. Tau's?
- $m_{\text {lite }}$, if $\ll \delta m_{21}^{2}$, a new scale to explain !

Conclusions:

- To Be Majorana or Not To Be Majorana?
- We know $\left(\left|U_{e 2}\right|^{2},\left|U_{e 3}\right|^{2},\left|U_{\mu 3}\right|^{2}\right)$ with precision of $(5,10,15) \%$ but have little information on the other 6 elements of the PMNS matrix without assuming Unitarity. Stringent tests of the ν SM Paradigm needed.
- Determining the Mass Hierarchy \& measuring CPV are the next steps. Tau's?
- $m_{\text {lite }}$, if $\ll \delta m_{21}^{2}$, a new scale to explain !
- Are there lite Sterile neutrinos?

Can we exclude $\left|U_{e 4}\right|^{2}$ and $\left|U_{\mu 4}\right|^{2}>0.01$, say, for $\delta m^{2} \sim 1 \mathrm{eV}^{2}$

- Solving the Neutrino Masses and Mixing pattern is difficult challenge for Theory! Need hints.
- Where are there further "SURPRISES" in the Neutrino Sector?

We haven't got the money,

so we'll have to think!

E. Rutherford

