‡Fermilab

v flux at nuSTORM D Adey

MAP Collaboration Meeting 28th May 2014

Overview

- Flux features
- Muon-decay flux sampling methodology
- Muon-decay flux at near and far detectors
- Muon-decay flux precision
- Pion-decay flux to near and very far detectors
- Thanks to A Liu, R Bayes, P Coloma

- Protons from Main Injector to new target and horn
- Pion transport line with two ~large angle bends
- Injection into ring with dual optics 5GeV pions and 3.8GeV muons
- ~180m straights
- Near detector 50m, far detector 2km optimisied for sterile neutrino search

Parameter	Values
L _{straight} (m)	185
Circumference (m)	480
Dynamic aperture Adyn	0.6
Momentum acceptance	\pm 20%
π /POT in momentum acc.	0.094
Fraction of π decays in	0.52
straight (F_s)	
Ratio of L_{straight} to	0.39
circumference (Ω)	
$A_{ m dyn} imes \pi/ m POT imes F_s imes \Omega$	0.011

- Assume total exposure of 10²¹ POT
- 2.6x10¹⁸ "useful" muon decays
- $8.6 \times 10^{19} \,\pi$ + decays

Muon beam tracking approximation

nue_energy_n

2000

Entries Mean

RMS

Underflow

1000

1500

Overflow

 χ^2 / ndf

p0

p1

500

Full Geant tracking of muon beam through decay lattice is computationally intensitve.

Beam was sampled a) with a single FODO cell b) over the entire straight and this sample used at decay points along the straight

Full - Fast / Full

0.5

-0.5

-1.5

-2

0

nue_energy_n

3919

644.4

3.795 / 69

-0.01299 ± 0.03935

6.079e-06 ± 1.730e-05

2500

0

3000

3500

4000

4500

5000

Energy

Flux at a near detector 50m from the end of the decay straight with a 3m radius

	μ+		μ-
$\overline{\nu\mu}$ NC	1,174,710	ve NC	1,002,240
ve NC	1,817,810	νμ ΝC	2,074,930
vµ CC	3,030,510	ve CC	2,519,840
ve CC	5,188,050	νμ CC	6,060,580

Rates / 100T for 10^{21} POT

Flux at a fr detector 2km from the end of the decay straight with a 3m radius – full muon simulation and decays

* far detector performance for sterile neutrino searches documented: Light sterile neutrino sensitivity at the nuSTORM facility Phys. Rev. D 89, 071301(R)

Beam divergence errors

Muon beam divergence inflated by 2% and compared with nominal case – less than 1% bin errors

Divergence resolution of 1% achievable with diagnostics

Divergence (102% - 100%)/ 102% 0 50.0 2000- 5000 2000-5000-

-0.1

-0.15

0

Beam divergence errors

Muon beam divergence inflated by 2% and compared with nominal case – less than 1% bin errors

Divergence resolution of 1% achievable with diagnostics

Quantity	Planned Detectors	Comment	
Intensity	Beam Current Trans-	0.1% resolution realistic	
	former		
Beam Position	Button BPM	1 cm resolution expected	
Beam Profile	Scintillating screens	Destructive, 1 cm resolution	
Energy	Polarimeter		
Energy Spread	Beam Profile measure-	order of 0.1% resolution	
	ment in Arcs		
Beam loss	Ionization or Diamond		
	Detectors		

	π+		π-
νμ ΝC	14,384,192	νμ ΝC	6,986,343
νμ CC	41,053,300	νμ CC	19,939,704

Rates / 100T for 10²¹ POT

Consider using nuSTORM pion decay beam with LBNE

- Sign selection removes wrong-sign background
- Momentum selection removes high energy NC background
- (Tunable) narrow-band momentum beam
- Hybrid neutrino source pi-decay and mu-decay

Very far detector pion decay

16

Neutrino Energy (GeV)

10

12

14

distributions at 1300km, scaled to 10²⁰ POT and / GeV.

- Neutrino flux from muon-decay expected to be precise to less than 1% bin-to-bin
- Performance of muon-decay neutrinos documented
- Much larger flux from initial pion-decay "flash"
- Plausible to move the nuSTORM pi-decay peak to the 2nd oscillation maximum what would be the benefits comparable flux, fewer interactions, low energy detector effects
- Fully optimised pi-decay beam would inhibit muon-decay physics
- FFAG flux under investigation at Imperial

Thank you