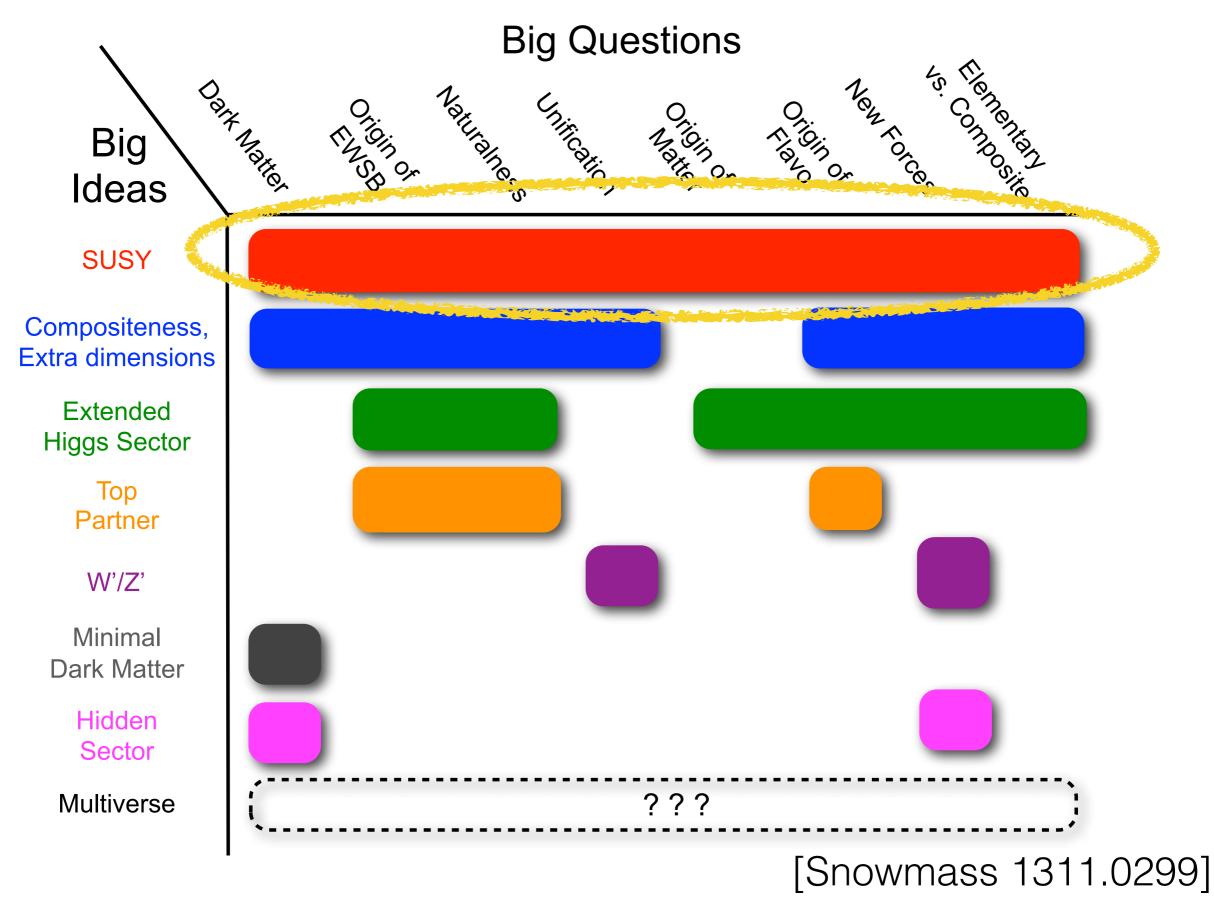
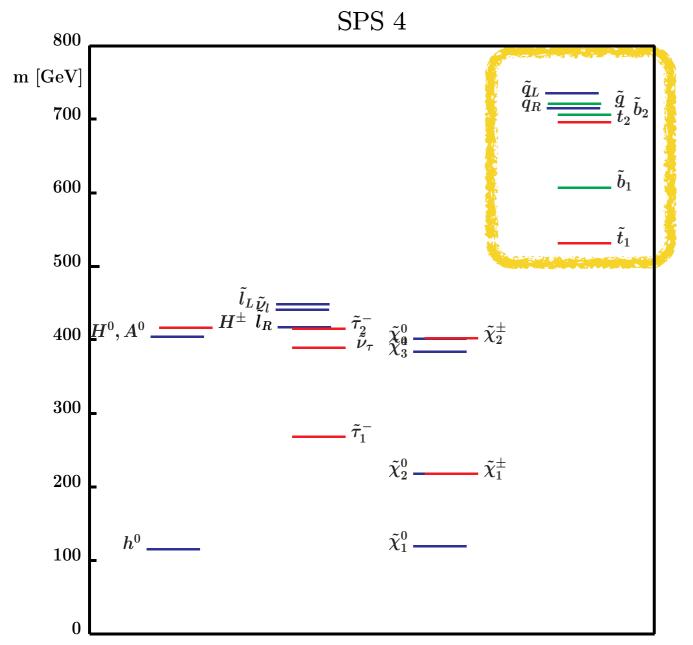
Supersymmetry 2014: µ-collider implications

Adam Martin University of Notre Dame (<u>amarti41@nd.edu</u>)

MAP Spring Meeting, May 30th, 2014, Fermilab


<u>Outline</u>

SUSY as we knew it, pre-LHC

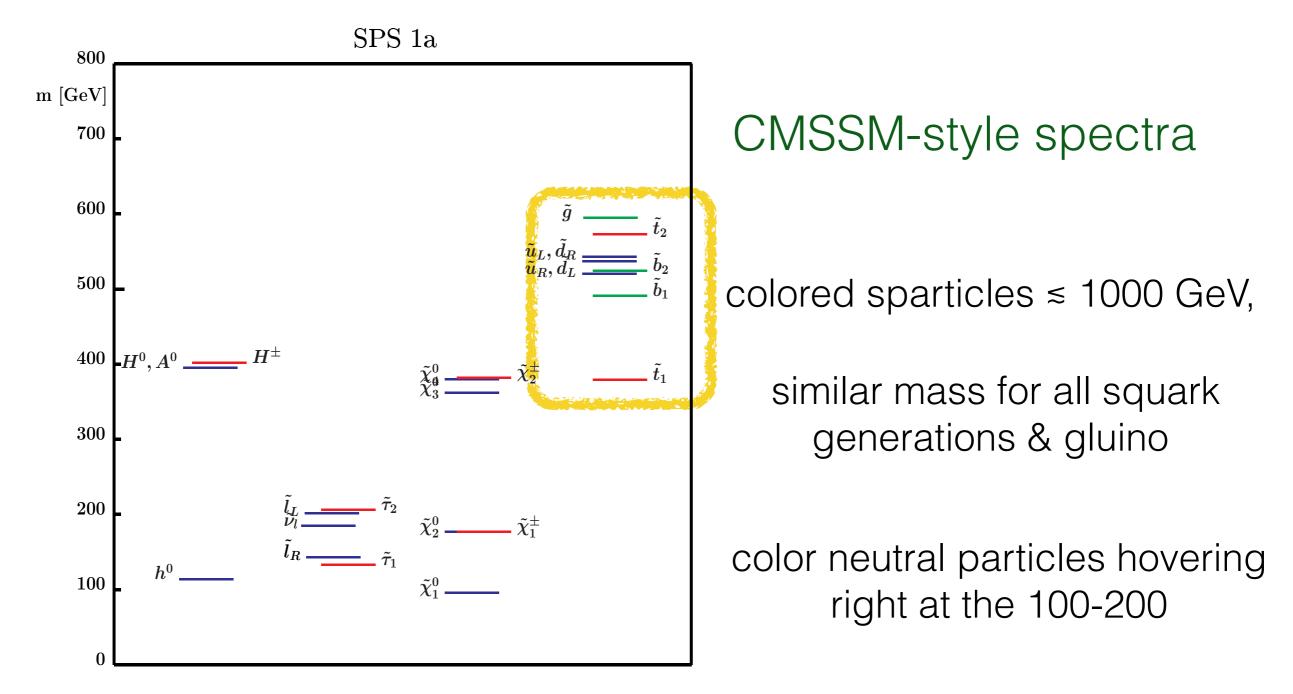

SUSY after 20 fb⁻¹, 8 TeV + a ~126 GeV Higgs

where we go from here

why supersymmetry?

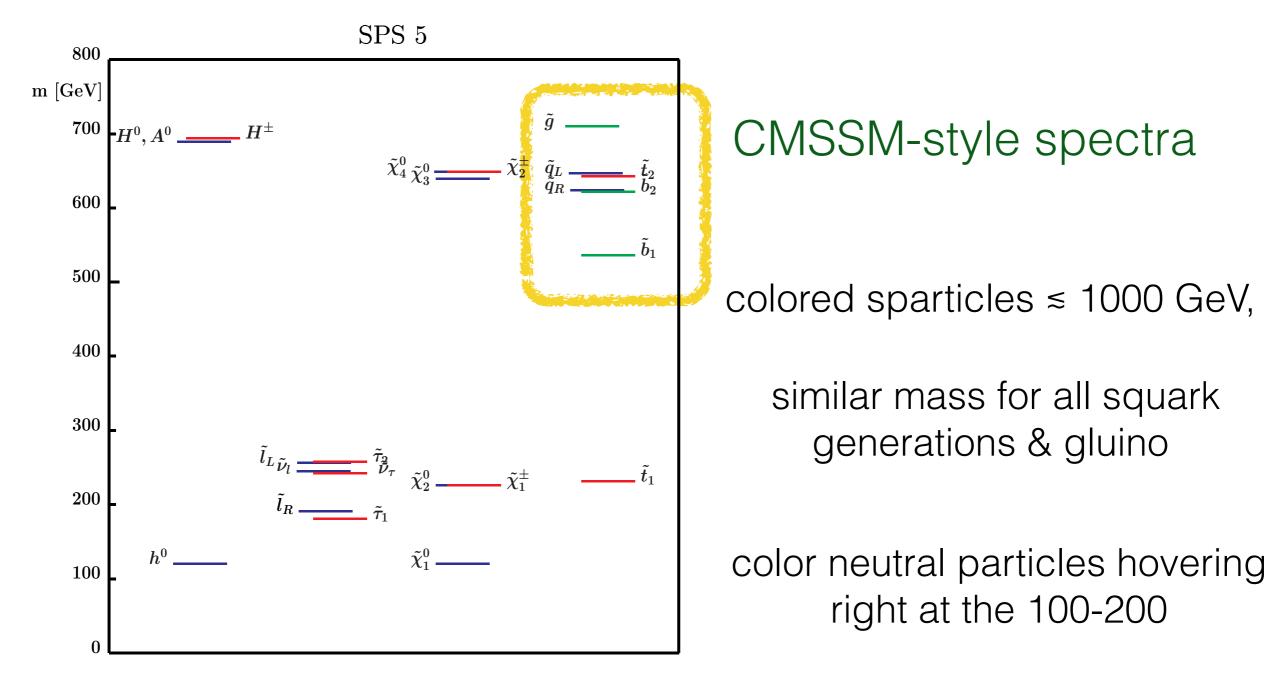
what was possible in SUSY, a la 2010

CMSSM-style spectra

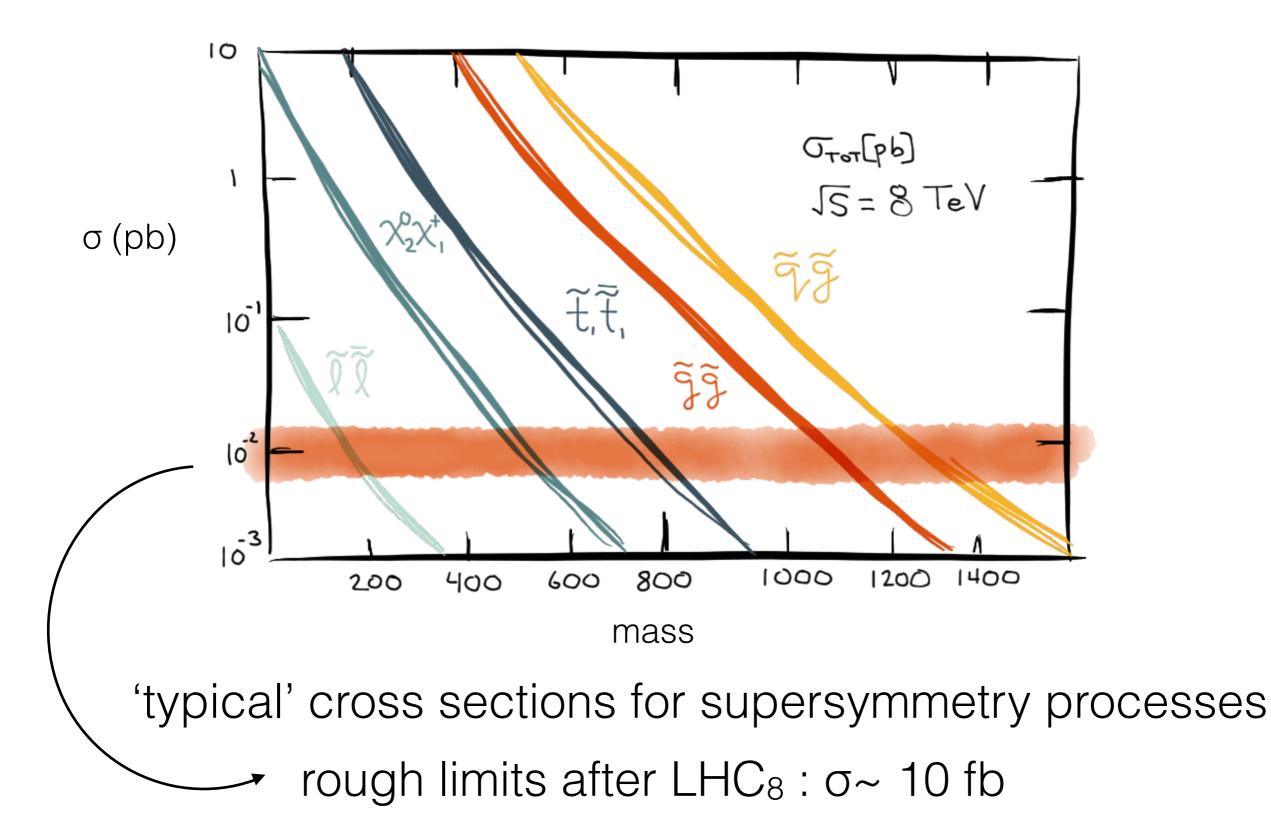

colored sparticles \lesssim 1000 GeV,

similar mass for all squark generations & gluino

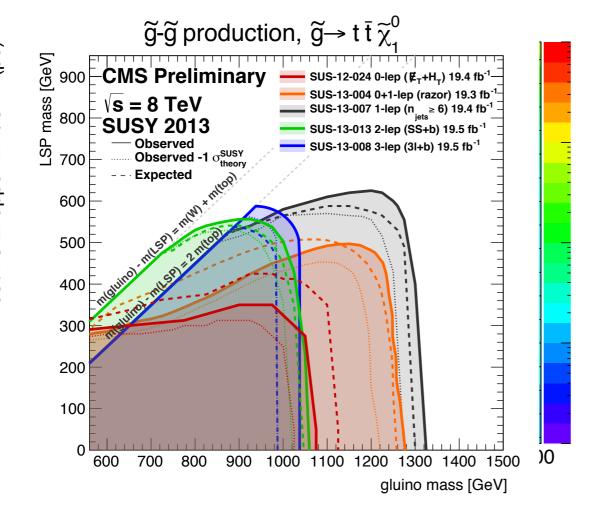
color neutral particles hovering right at the 100-200

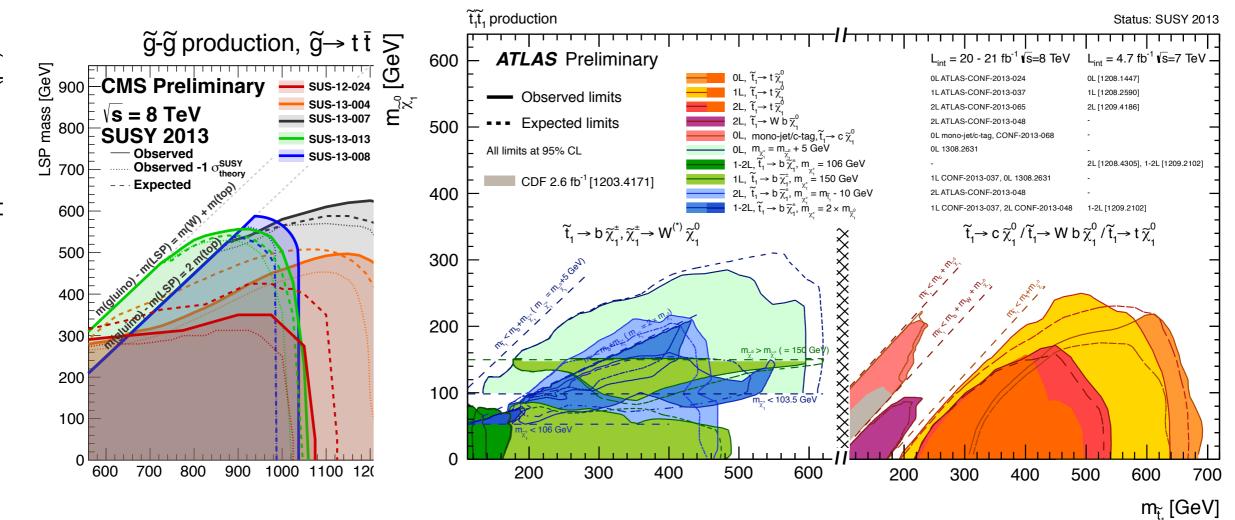

[LesHouches 2011]

what was possible in SUSY, a la 2010

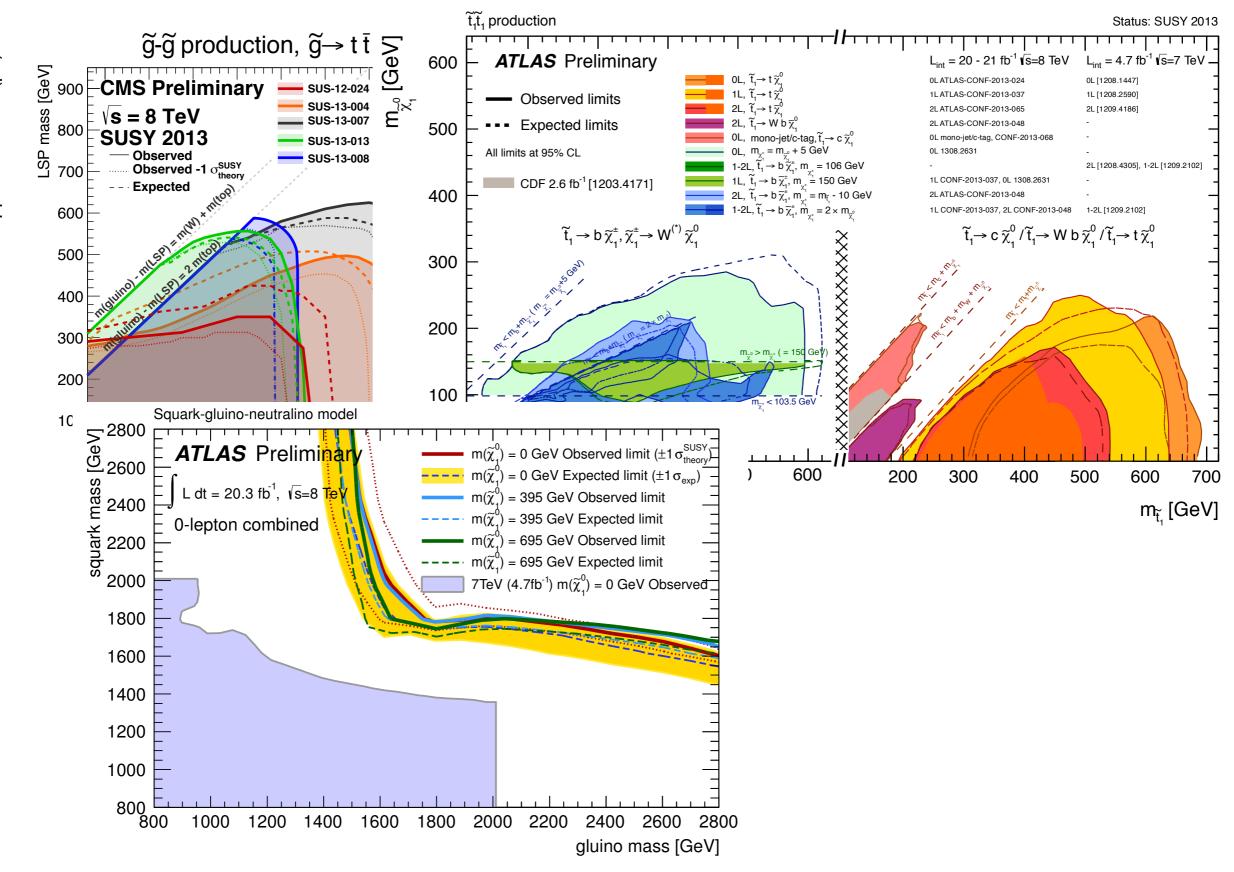

[LesHouches 2011]

what was possible in SUSY, a la 2010

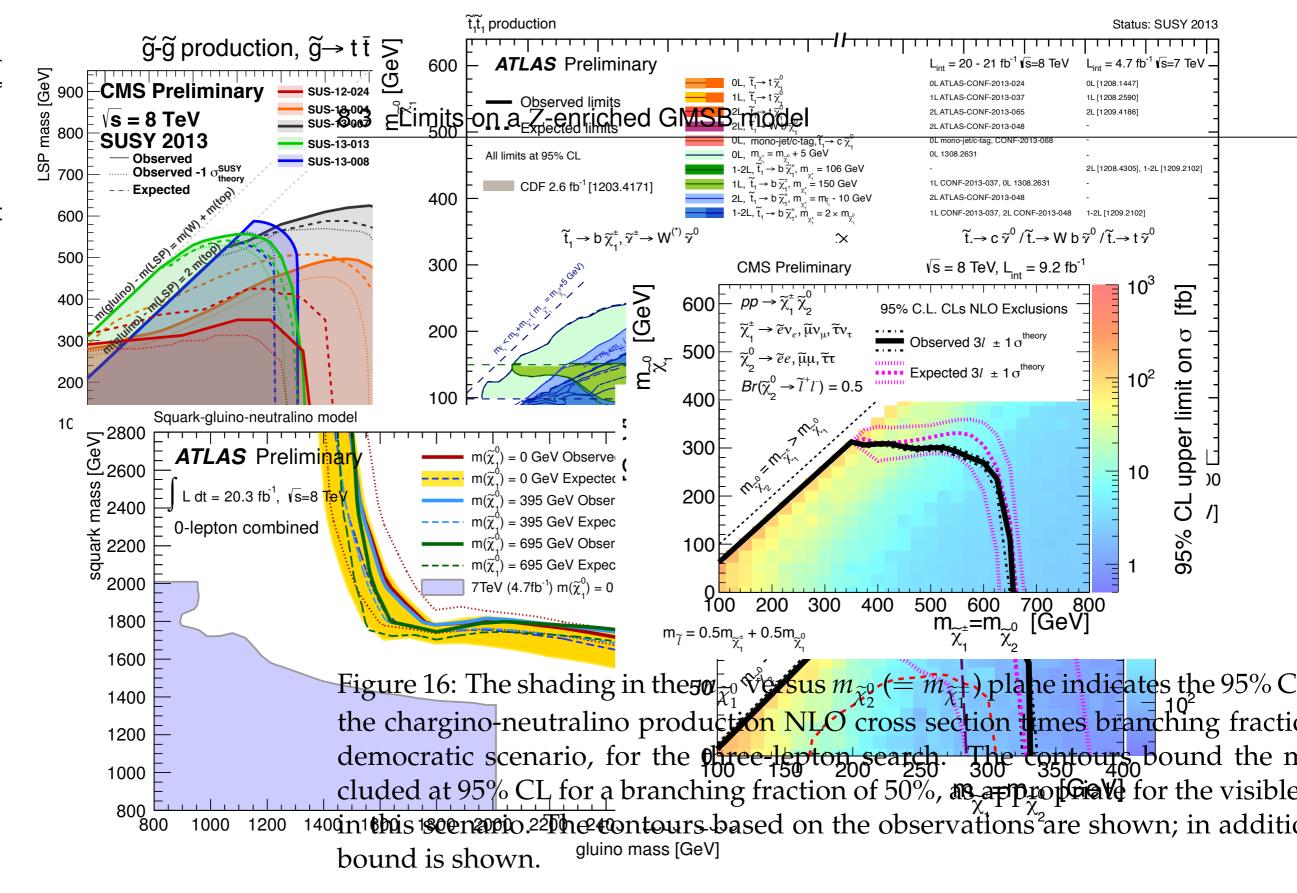


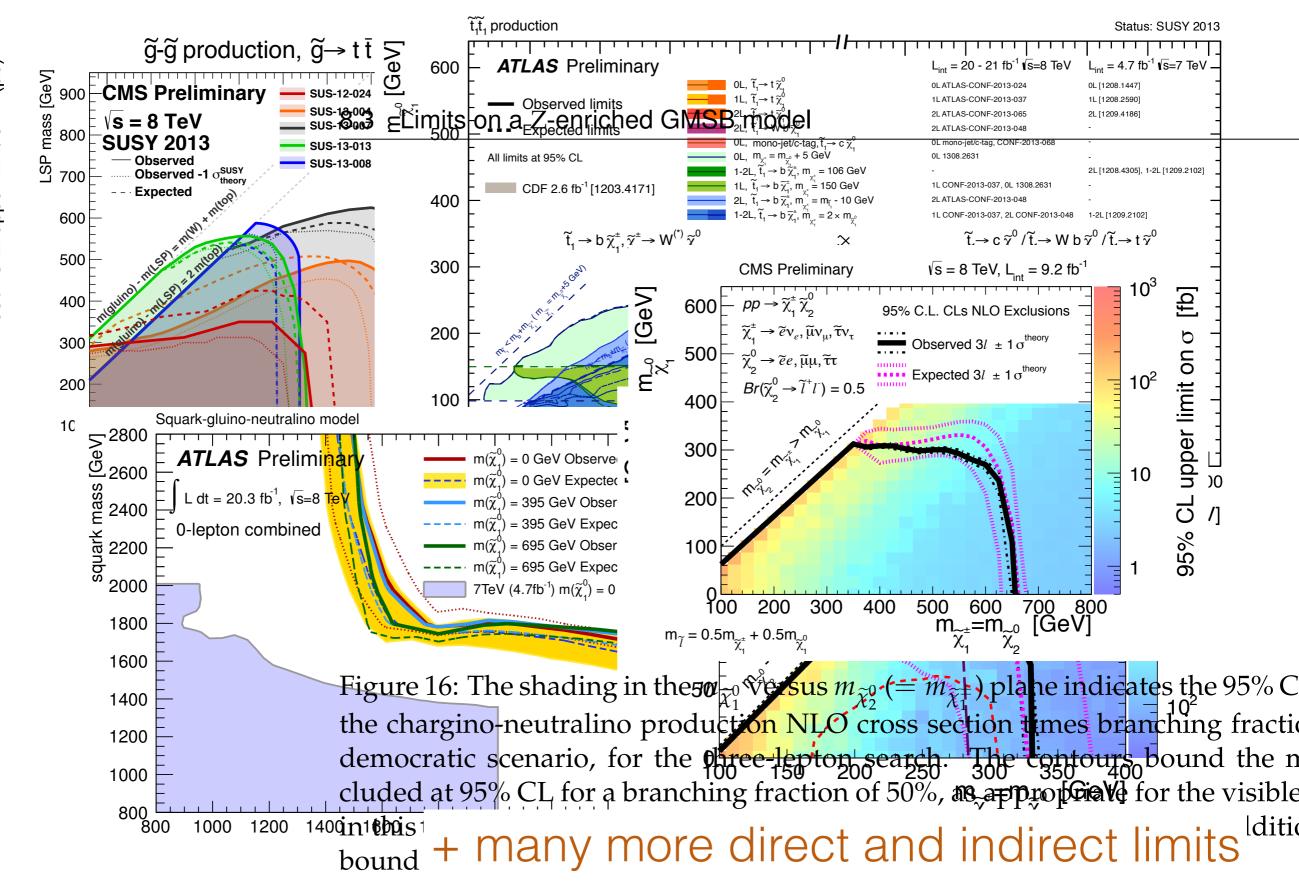

[LesHouches 2011]

what the LHC sees, so far

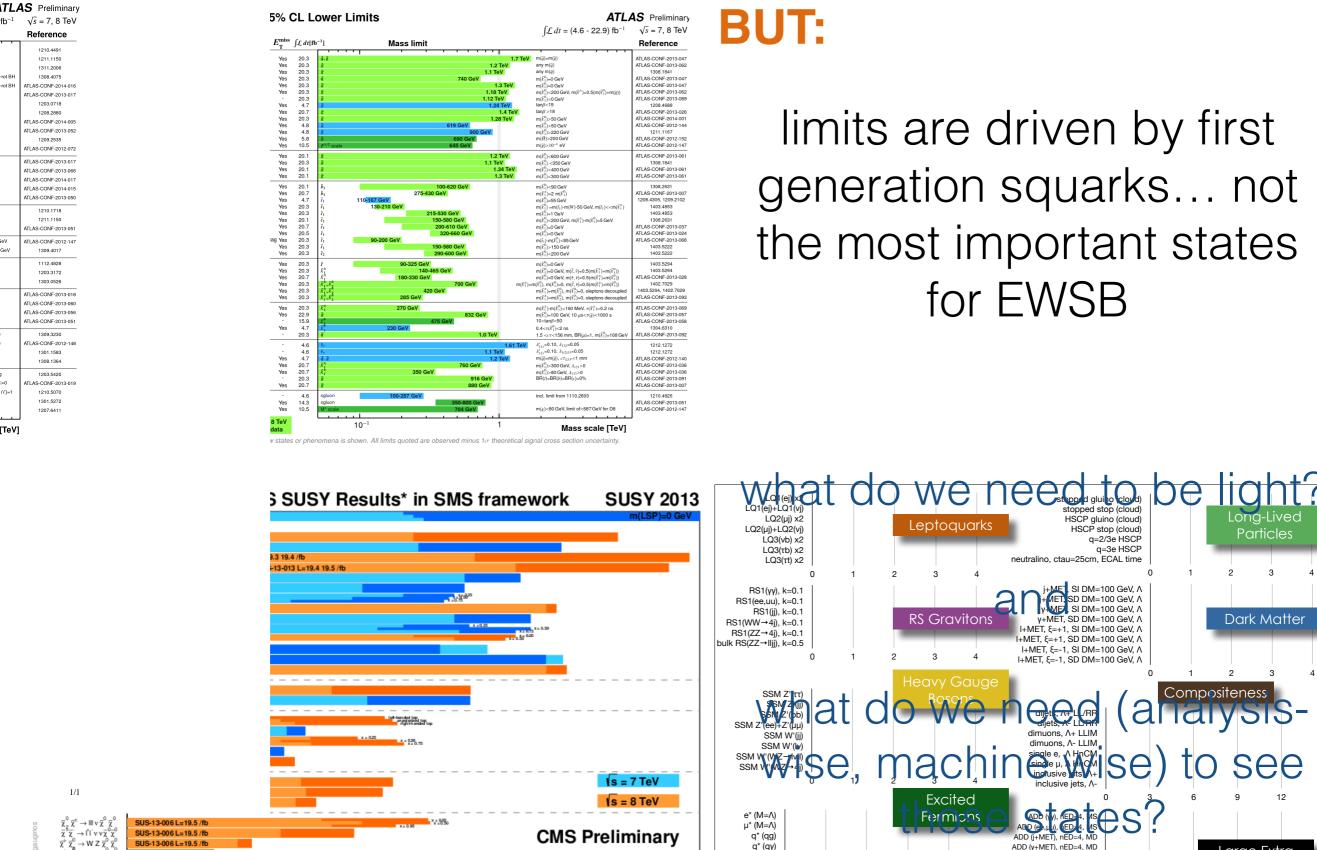


[from N. Craig]




3

3


3

3

the only stop seen at CERN

CMS Preliminary $\overline{\chi}^{\pm}_{\pm} \overline{\chi}^{0}_{\mathfrak{g}} \rightarrow W Z \overline{\chi}^{0}_{\mathfrak{g}} \overline{\chi}$ SUS-13-006 L=19.5 /fb \rightarrow H W $\overline{\chi}^{\circ}$ $\overline{\chi}$ SUS-13-017 L=19.5 /fb For decays with intermediate mass $\rightarrow \parallel \tau v \vec{\chi}$ SUS-13-006 L=19.5 /fb _x=0.5 -(1-x)·m SUS-13-006 L=19.5 /f → ttt v x x x x Î→Iχ 800 0 200 400 600 1000 1200

*Observed limits, theory uncertainties not included Only a selection of available mass limits Probe *up to* the quoted mass limit

CMS Exotica Physics Group Summary – March, 2014

Multijet

Resonances

QBH, nED=4, MD=4 TeV

Jet Extinction Scale

String Scale (jj)

NR BH, nED=4, MD=4 TeV

b'

coloron(ii) x2

gluino(3j) x2

gluino(jjb) x2

coloron(4i) x2

1400

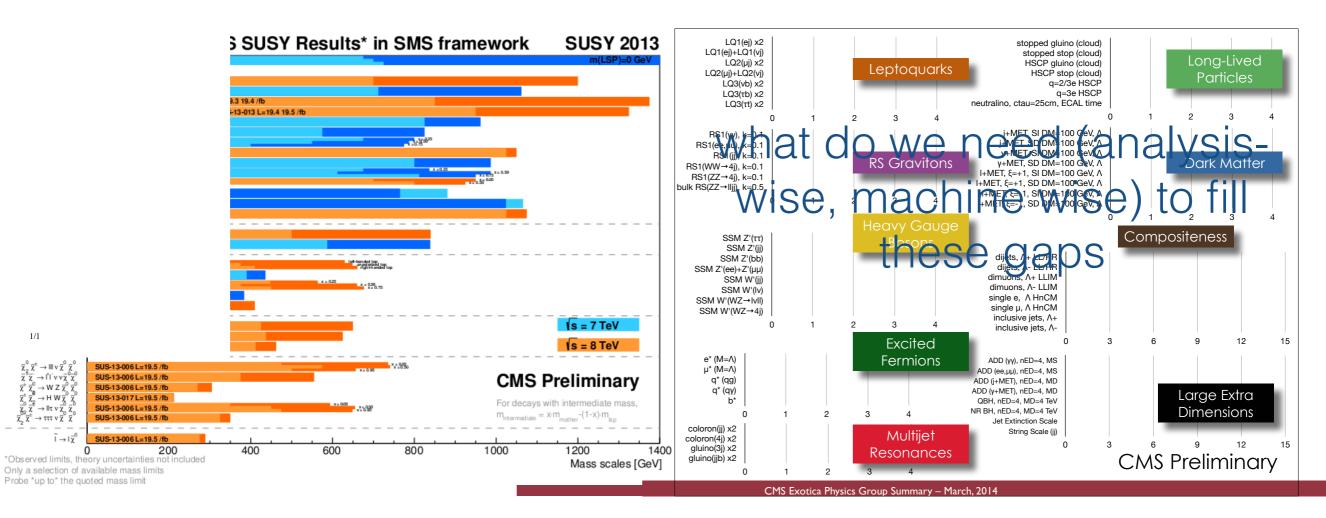
Mass scales [GeV]

Large Extra

Dimensions

CMS Preliminary

TLAS Preliminary $fb^{-1} = \sqrt{s} = 7, 8 \text{ TeV}$


10	v 5 = 7, 0 10 1
	Reference
	1210.4491
	1211.1150
	1311.2006
ot BH	1308.4075
ot BH	ATLAS-CONF-2014-016
	ATLAS-CONF-2013-017
	1203.0718
	1208.2880
	ATLAS-CONF-2014-005
	ATLAS-CONF-2013-052
	1209.2535
	ATLAS-CONF-2012-072
	ATLAS-CONF-2013-017
	ATLAS-CONF-2013-066
	ATLAS-CONF-2014-017
	ATLAS-CONF-2014-015
	ATLAS-CONF-2013-050
	1210.1718
	1211.1150
	ATLAS-CONF-2013-051
v	ATLAS-CONF-2012-147
eV	1309.4017
	1112.4828
	1203.3172
	1303.0526
	ATLAS-CONF-2013-018
	ATLAS-CONF-2013-060
	ATLAS-CONF-2013-056
	ATLAS-CONF-2013-051
	1309.3230
	ATLAS-CONF-2012-148
	1301.1583
	1308.1364
	1203.5420
0	ATLAS-CONF-2013-019
ℓ)=1	1210.5070
	1301.5272
	1207.6411
	,
TeV]	

5% CL Lower Limits

% CL Lower Limits			ATLAS Preliminary	
			$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$
$E_{\rm T}^{\rm miss}$	∫£ dt[fb	-1] Mass limit		Reference
Yes	20.3	φ,ğ 1.7 TeV	m(q)=m(g)	ATLAS-CONF-2013-047
Yes	20.3	8 1.2 TeV	any m(ĝ)	ATLAS-CONF-2013-062
Yes	20.3	8 1.1 TeV	any $m(\bar{q})$	1308.1841
Yes Yes	20.3 20.3	<i>q̃</i> 740 GeV <i>š</i> 1.3 TeV	m($\tilde{\chi}_{1}^{0}$)=0 GeV m($\tilde{\chi}_{1}^{0}$)=0 GeV	ATLAS-CONF-2013-047 ATLAS-CONF-2013-047
Yes	20.3	ž 1.18 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{\chi}))$	ATLAS-CONF-2013-062
-	20.3	ž 1.12 TeV	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$	ATLAS-CONF-2013-089
Yes	4.7	ž 1.24 TeV	tanβ<15	1208.4688
Yes Yes	20.7 20.3	ĝ 1.4 TeV	$tan\beta > 18$	ATLAS-CONF-2013-026 ATLAS-CONF-2014-001
Yes	20.3	8 1.28 TeV	m($\tilde{\chi}_{1}^{D}$)>50 GeV m($\tilde{\chi}_{1}^{D}$)>50 GeV	ATLAS-CONF-2014-001 ATLAS-CONF-2012-144
Yes	4.8	ž 900 GeV	m(t ⁰)>220 GeV	1211.1167
Yes	5.8	ž 690 GeV	m(<i>Ĥ</i>)>200 GeV	ATLAS-CONF-2012-152
Yes	10.5	F ^{1/2} scale 645 GeV	m(ĝ)>10 ⁻⁺ eV	ATLAS-CONF-2012-147
Yes	20.1	ğ 1.2 TeV	m($\tilde{\ell}_1^0$)<600 GeV	ATLAS-CONF-2013-061
Yes	20.3	<i>š</i> 1.1 TeV	$m(\tilde{k}_{1}^{0}) < 350 GeV$	1308.1841
Yes	20.1	3 1.34 TeV	$m(\tilde{\chi}_{0}^{0}) < 400 \text{ GeV}$	ATLAS-CONF-2013-061
Yes	20.1	<i>š</i> 1.3 TeV	m($\tilde{\chi}_{1}^{0}$)<300 GeV	ATLAS-CONF-2013-061
Yes	20.1	b1 100-620 GeV	m(\tilde{k}_{1}^{0})<90 GeV	1308.2631
Yes Yes	20.7 4.7	δ ₁ 275-430 GeV ζ ₁ 110-167 GeV	$m(\tilde{\chi}_{1}^{\pm})=2 m(\tilde{\chi}_{1}^{0})$ $m(\tilde{\chi}_{1}^{0})=55 \text{ GeV}$	ATLAS-CONF-2013-007 1208.4305, 1209.2102
Yes	20.3	<i>i</i> ₁ 110-167 GeV <i>i</i> ₁ 130-210 GeV	$m(\tilde{x}_{1}) = 55 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) = m(\tilde{t}_{1}) \cdot m(W) \cdot 50 \text{ GeV}, m(\tilde{t}_{1}) < < m(\tilde{\chi}_{1}^{\pm})$	1403,4853
Yes	20.3	Ž ₁ 215-530 GeV	$m(\tilde{\chi}_{1}^{0})=1$ GeV	1403.4853
Yes	20.1	<i>τ</i> ₁ 150-580 GeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$	1308.2631
Yes	20.7	τ̃ ₁ 200-610 GeV	$m(\tilde{\chi}_{0}^{0})=0 \text{ GeV}$	ATLAS-CONF-2013-037
Yes 9 Yes	20.5 20.3	<i>i</i> ₁ 320-660 GeV <i>i</i> ₁ 90-200 GeV	m($\tilde{\ell}_1^0$)=0 GeV m($\tilde{\ell}_1$)-m($\tilde{\ell}_1^0$)<85 GeV	ATLAS-CONF-2013-024 ATLAS-CONF-2013-068
Yes	20.3	τ ₁ 150-580 GeV	$m(t_1)-m(t_1)<05 \text{ GeV}$ $m(\tilde{x}_1^0)>150 \text{ GeV}$	1403.5222
Yes	20.3	290-600 GeV	m($\tilde{\chi}_{1}^{0}$)<200 GeV	1403.5222
Yes	20.3	ž 90-325 GeV	m($\hat{\chi}_{1}^{0}$)=0 GeV	1403.5294
Yes	20.3	\$\tilde{x}_1^+\$ 140-465 GeV \$\tilde{x}_1^+\$ 180-330 GeV	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1403.5294
Yes	20.7		$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{0})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2013-028
Yes Yes	20.3 20.3	$\frac{\tilde{\chi}_{1}^{2}, \tilde{\chi}_{2}^{0}}{\tilde{\chi}_{1}^{4}, \tilde{\chi}_{2}^{0}}$ 700 GeV $m(\tilde{\chi}_{1}^{2})=t$ $\frac{\tilde{\chi}_{1}^{4}, \tilde{\chi}_{2}^{0}}{420 \text{ GeV}}$	$n(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\tau})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ $m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, sleptons decoupled$	1402.7029 1403.5294, 1402.7029
Yes	20.3	420 GeV	$m(\tilde{x}_1) = m(\tilde{x}_2), m(\tilde{x}_1) = 0$, sleptons decoupled $m(\tilde{x}_1^1) = m(\tilde{x}_2^0), m(\tilde{x}_1^0) = 0$, sleptons decoupled	ATLAS-CONF-2013-093
	20.3			ATLAS-CONF-2013-069
Yes Yes	20.3		$m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$ $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, 10 \mu \text{s} < \tau(\tilde{\chi}) < 1000 \text{ s}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057
-	15.9	x ⁰ 475 GeV	10 <tanβ<50< td=""><td>ATLAS-CONF-2013-058</td></tanβ<50<>	ATLAS-CONF-2013-058
Yes	4.7	X ⁰ 230 GeV	0.4 <r(𝔅1)<2 ns<="" td=""><td>1304.6310</td></r(𝔅1)<2>	1304.6310
	20.3	φ 1.0 TeV	$1.5 < c\tau < 156 \text{ mm}, BR(\mu)=1, m(\tilde{\chi}_1^0)=108 \text{ GeV}$	ATLAS-CONF-2013-092
-	4.6	ν _τ 1.61 TeV	λ ₃₁₁ =0.10, λ ₁₃₂ =0.05	1212.1272
-	4.6	ў _г 1.1 ТеV	$\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$	1212.1272
Yes Yes	4.7 20.7	φ, ğ 1.2 TeV χ* 760 GeV	$m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1 \text{ mm}$ $m(\tilde{\chi}_{1}^{0})>300 \text{ GeV}, \lambda_{121}>0$	ATLAS-CONF-2012-140 ATLAS-CONF-2013-036
Yes	20.7	$\frac{\lambda_1}{\tilde{\chi}_1^2}$ 350 GeV	$m(\chi_1)>300 \text{ GeV}, \chi_{121}>0$ $m(\chi_1^0)>80 \text{ GeV}, \chi_{133}>0$	ATLAS-CONF-2013-036 ATLAS-CONF-2013-036
	20.3	ğ 916 GeV	BR(t)=BR(b)=BR(c)=0%	ATLAS-CONF-2013-091
Yes	20.7	<u>ğ</u> 880 GeV		ATLAS-CONF-2013-007
-	4.6	sgluon 100-287 GeV	incl. limit from 1110.2693	1210.4826
Yes	14.3	sgluon 350-800 GeV		ATLAS-CONF-2013-051
Yes	10.5	M* scale 704 GeV	m($_{\chi})\!<\!\!80$ GeV, limit of $\!<\!687\text{GeV}$ for D8	ATLAS-CONF-2012-147
TeV		10 ⁻¹ 1		,
ata		10 .	Mass scale [TeV]	

BUT:

limits have holes

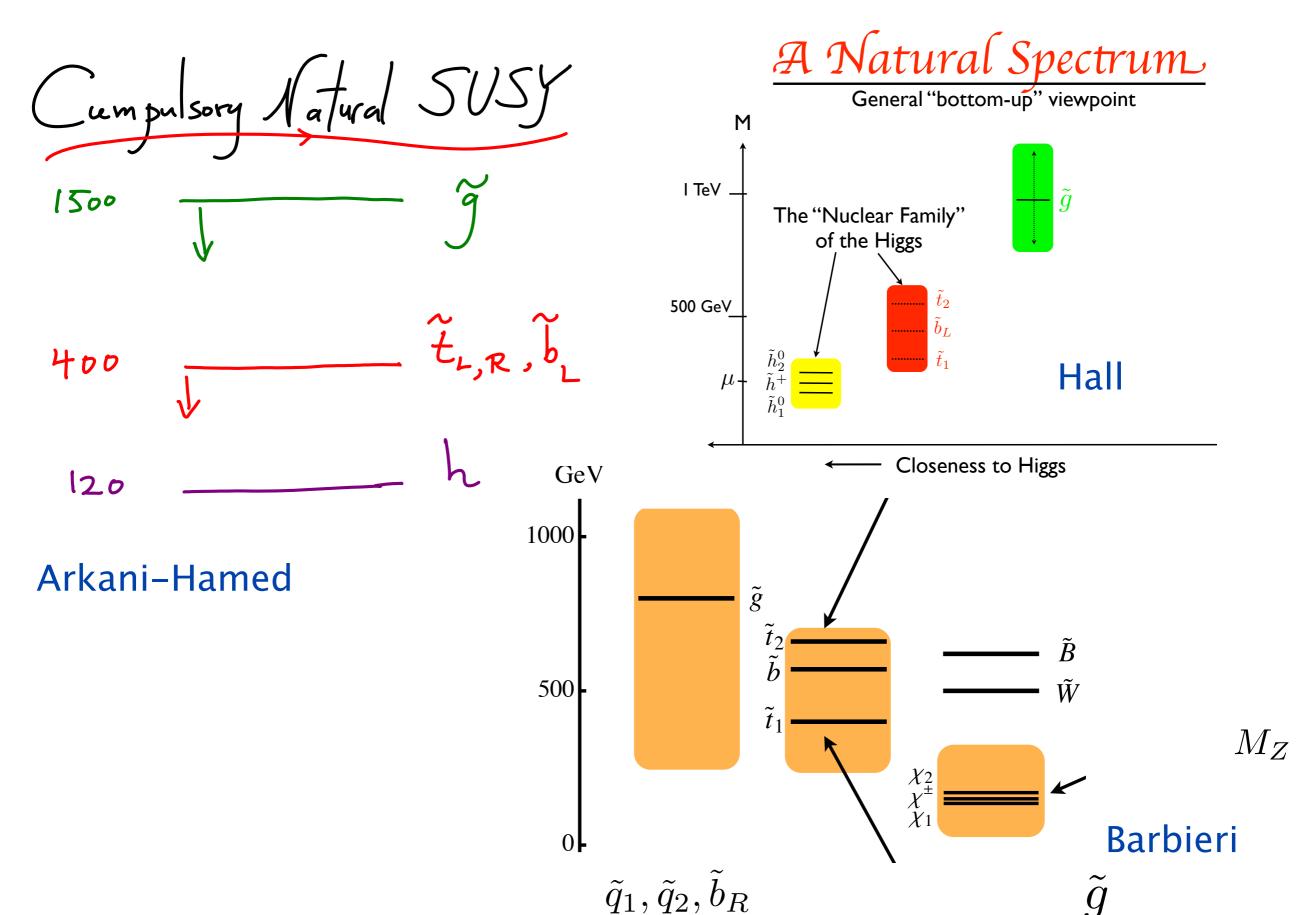
$$\frac{1}{2}M_Z^2 = -m_{H_u}^2 - |\mu|^2 + O\Big(\frac{1}{\tan^2\beta}\Big)$$

$$\frac{1}{2}M_Z^2 = -m_{H_u}^2 - |\mu|^2 + O\left(\frac{1}{\tan^2\beta}\right)$$

$$\begin{split} \Delta(|\mu|^2) &= 10 \times \frac{|\mu|^2}{(200 \text{ GeV})^2} \quad \text{``tree-level''} \\ \Delta(\delta m_{H_u}^2|_{\text{stop}}) &= \frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \log \frac{\Lambda_{\text{mess}}}{(m_{\tilde{t}_1} m_{\tilde{t}_2})^{1/2}} \\ &\simeq 10 \times \frac{m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2}{2 \times (450 \text{ GeV})^2} \frac{\log \Lambda_{\text{mess}} / (m_{\tilde{t}_1} m_{\tilde{t}_2})^{1/2}}{3} \\ \text{``loop-level''} \end{split}$$

$$\frac{1}{2}M_Z^2 = -m_{H_u}^2 - |\mu|^2 + O\left(\frac{1}{\tan^2\beta}\right)$$

$$\begin{split} \Delta(|\mu|^2) &= 10 \times \frac{|\mu|^2}{(200 \text{ GeV})^2} \quad \text{``tree-level''} \\ \Delta(\delta m_{H_u}^2|_{\text{stop}}) &= \frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \log \frac{\Lambda_{\text{mess}}}{(m_{\tilde{t}_1} m_{\tilde{t}_2})^{1/2}} \\ &\simeq 10 \times \frac{m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2}{2 \times (450 \text{ GeV})^2} \frac{\log \Lambda_{\text{mess}} / (m_{\tilde{t}_1} m_{\tilde{t}_2})^{1/2}}{3} \\ \text{``loop-level''} \end{split}$$


small
$$\Delta$$
 pushes for

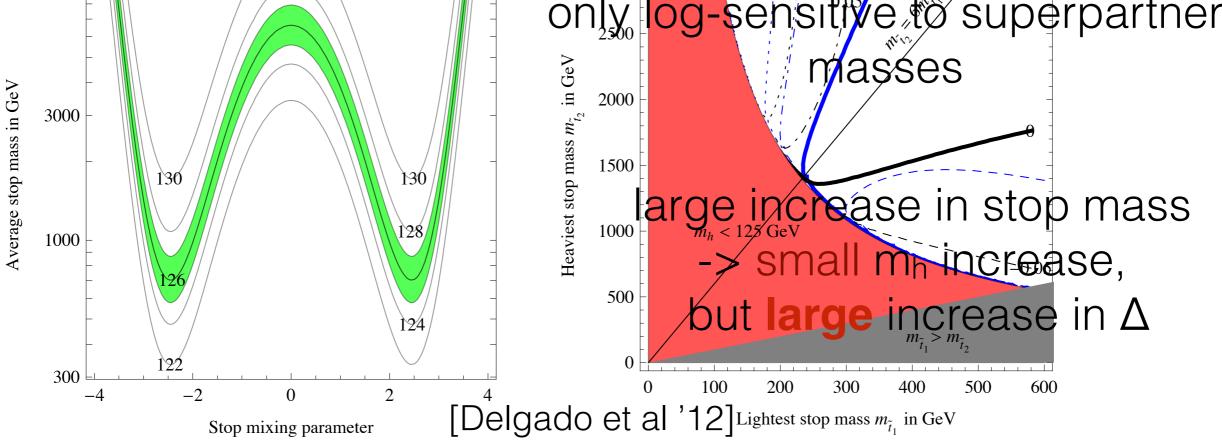
 $\label{eq:mstop} \begin{array}{l} \mu \ \sim \ 100\text{-}200 \ GeV \\ m_{stop} \ \sim \ 400 \ GeV \end{array}$

Naturalness

$$\Delta(\delta m_{H_u}^2|_{\text{wino}}) = \frac{3g_2^2}{8\pi^2} |M_2|^2 \log \frac{\Lambda_{\text{mess}}}{|M_2|} \xrightarrow{\text{breaking communicated}} \\ \simeq 10 \times \frac{|M_2|^2}{(930 \text{ GeV})^2} \frac{\log \Lambda_{\text{mess}}/|M_2|}{3} \\ \Delta(\delta m_{H_u}^2|_{\text{gluino}}) = \frac{2\alpha_s y_t^2}{\pi^3} |M_3|^2 \log \frac{\Lambda_{\text{mess}}}{(m_{\tilde{t}_1} m_{\tilde{t}_2})^{1/2}} \log \frac{\Lambda_{\text{mess}}}{|M_3|} \\ = 10 \times \frac{|M_3|^2}{(1200 \text{ GeV})^2} \frac{\log \Lambda_{\text{mess}}/(m_{\tilde{t}_1} m_{\tilde{t}_2})^{1/2}}{3} \frac{\log \Lambda_{\text{mess}}/|M_3|}{1.5} \\ \text{wino:} \leq \text{TeV} \\ \text{gluino:} \leq 1.3 \text{ TeV}, \text{ comes from stop running} \end{cases}$$

same sparticles affect Higgs mass, but weaker dependence

Higgs mass forces **MSSM** supersymmetry to shift expectations


$$m_{h^{0}}^{2} = m_{Z}^{2} \cos^{2}(2\beta) + \frac{3}{4\pi^{2}} \sin^{2}\beta y_{t}^{2} \left[m_{t}^{2} \ln \left(m_{\tilde{t}_{1}} m_{\tilde{t}_{2}}/m_{t}^{2} \right) + c_{t}^{2} s_{t}^{2} (m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2}) \ln (m_{\tilde{t}_{2}}^{2}/m_{\tilde{t}_{1}}^{2}) + c_{t}^{4} s_{t}^{4} \left\{ (m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2})^{2} - \frac{1}{2} (m_{\tilde{t}_{2}}^{4} - m_{\tilde{t}_{1}}^{4}) \ln (m_{\tilde{t}_{2}}^{2}/m_{\tilde{t}_{1}}^{2}) \right\} / m_{t}^{2} \right]$$

though fairly easy to accommodate in <u>extended</u> setups

Higgs mass forces **MSSM** supersymmetry to shift expectations

$$m_{h^{0}}^{2} = m_{Z}^{2} \cos^{2}(2\beta) + \frac{3}{4\pi^{2}} \sin^{2}\beta y_{t}^{2} \left[m_{t}^{2} \ln \left(m_{\tilde{t}_{1}} m_{\tilde{t}_{2}} / m_{t}^{2} \right) + c_{\tilde{t}}^{2} s_{\tilde{t}}^{2} (m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2}) \ln(m_{\tilde{t}_{2}}^{2} / m_{\tilde{t}_{1}}^{2}) + c_{\tilde{t}}^{4} s_{\tilde{t}}^{4} \left\{ (m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2})^{2} - \frac{1}{2} (m_{\tilde{t}_{2}}^{4} - m_{\tilde{t}_{1}}^{4}) \ln(m_{\tilde{t}_{2}}^{2} / m_{\tilde{t}_{1}}^{2}) \right\} / m_{t}^{2} \right].$$

$$m_{t}^{10000} \int 0 \ln \left[y_{2} \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log + s e \right] + \log \left[\log - s e n \operatorname{sitt}_{10}^{10} \log$$

122

-2

0

Stop mixing parameter

2

300

-4

though fairly easy to accommodate in <u>extended</u> setups

ease in Δ

600

500

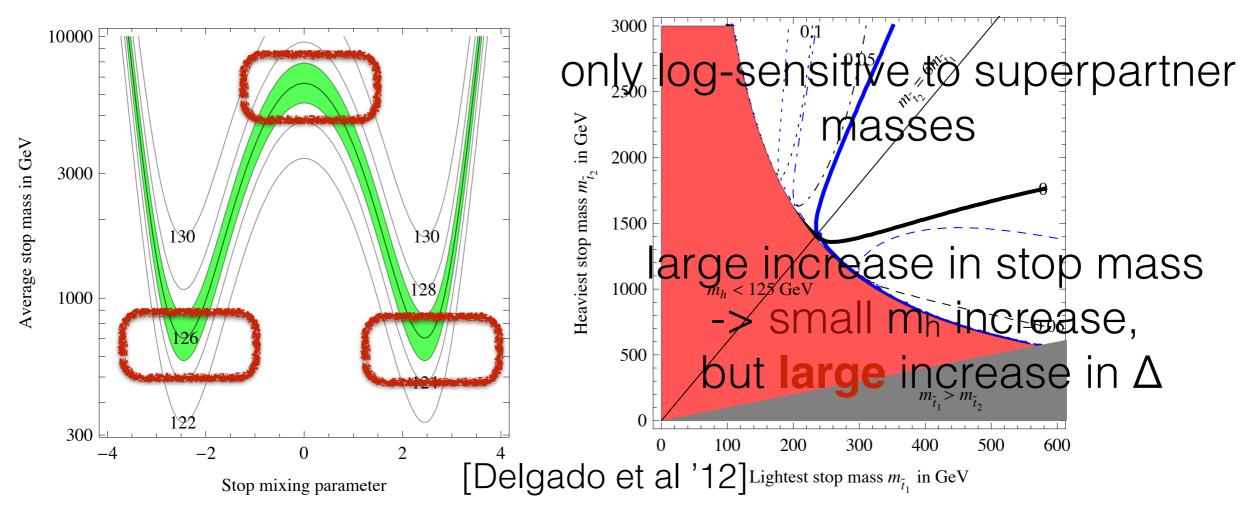
Higgs mass forces **MSSM** supersymmetry to shift expectations

$$m_{h^{0}}^{2} = m_{Z}^{2}\cos^{2}(2\beta) + \frac{3}{4\pi^{2}}\sin^{2}\beta y_{t}^{2} \left[m_{t}^{2}\ln\left(m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}/m_{t}^{2}\right) + c_{\tilde{t}}^{2}s_{\tilde{t}}^{2}(m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2})\ln(m_{\tilde{t}_{2}}^{2}/m_{\tilde{t}_{1}}^{2}) + c_{\tilde{t}}^{4}s_{\tilde{t}}^{4} \left\{ (m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{1}}^{2})^{2} - \frac{1}{2}(m_{\tilde{t}_{2}}^{4} - m_{\tilde{t}_{1}}^{4})\ln(m_{\tilde{t}_{2}}^{2}/m_{\tilde{t}_{1}}^{2}) \right\} / m_{t}^{2} \right]$$

0

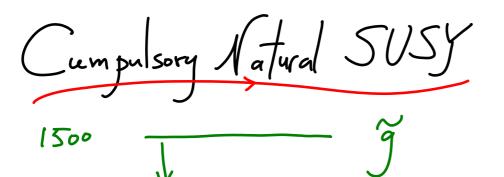
100

[Delgado et al '12] Lightest stop mass $m_{\tilde{t}_1}$ in GeV


200

300

though fairly easy to accommodate in <u>extended</u> setups


Higgs mass forces **MSSM** supersymmetry to shift expectations

$$m_{h^0}^2 = m_Z^2 \cos^2(2\beta) + \frac{3}{4\pi^2} \sin^2\beta y_t^2 \bigg[m_t^2 \ln \left(m_{\tilde{t}_1} m_{\tilde{t}_2} / m_t^2 \right) + c_{\tilde{t}}^2 s_{\tilde{t}}^2 (m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2) \ln(m_{\tilde{t}_2}^2 / m_{\tilde{t}_1}^2) + c_{\tilde{t}}^4 s_{\tilde{t}}^4 \bigg\{ (m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)^2 - \frac{1}{2} (m_{\tilde{t}_2}^4 - m_{\tilde{t}_1}^4) \ln(m_{\tilde{t}_2}^2 / m_{\tilde{t}_1}^2) \bigg\} / m_t^2 \bigg].$$

targeting natural SUSY

Higgs mass makes us accept more tuning, but the natural paradigm remains relatively unconstrained Number 1 SUSY target for LHC₁₄ + beyond

model building efforts well underway

[Craig et al '11, '12], [Delgado et al '11]

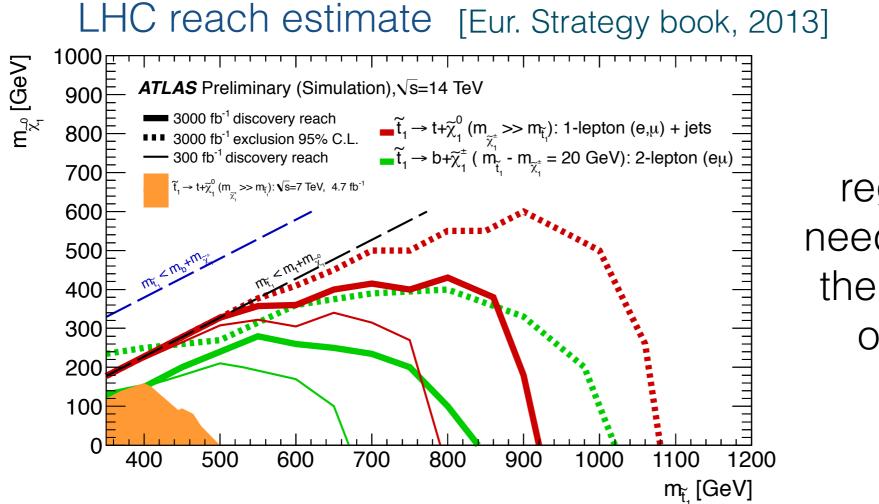
lightest states are the Higgsinos (µ) and stops (gluino contribution more model dependent.. (e.g. Dirac SUSY))

targeting natural SUSY

120

Higgs mass makes us accept more tuning, but the natural paradigm remains relatively unconstrained Number 1 SUSY target for LHC₁₄ + beyond

Higgs-aware Natural SUSY 1500 --- $\tilde{t}_{L,R}, \tilde{b}_{L}$

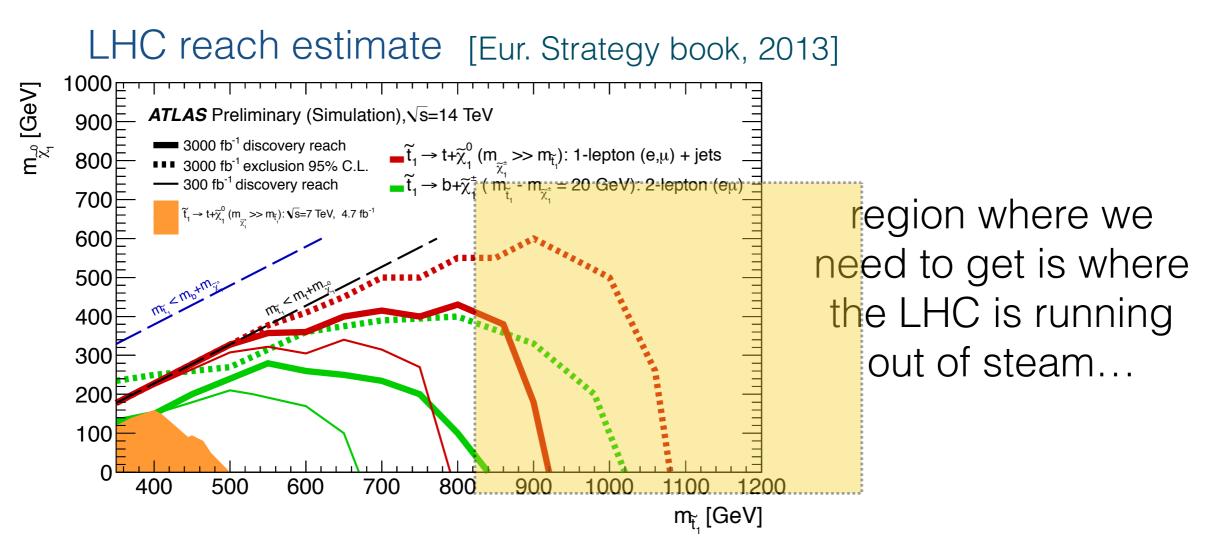

model building efforts well underway

[Craig et al '11, '12], [Delgado et al '11]

lightest states are the Higgsinos (µ) and stops (gluino contribution more model dependent.. (e.g. Dirac SUSY))

stops

Higgs mass **already** tells us stops (either one or both) should be > TeV (within vanilla MSSM).



region where we need to get is where the LHC is running out of steam...

future collider should have **this** region in its sights want to study the stop, not just discover it!!

stops

Higgs mass **already** tells us stops (either one or both) should be > TeV (within vanilla MSSM).

future collider should have **this** region in its sights want to study the stop, not just discover it!!

lots of tricks that allow lighter stops (and other states) to remain valid

- R-parity violation
- long cascade decays
- compressed spectra

lots of tricks that allow lighter stops (and other states) to remain valid

- R-parity violation —
- long cascade decays
- compressed spectra

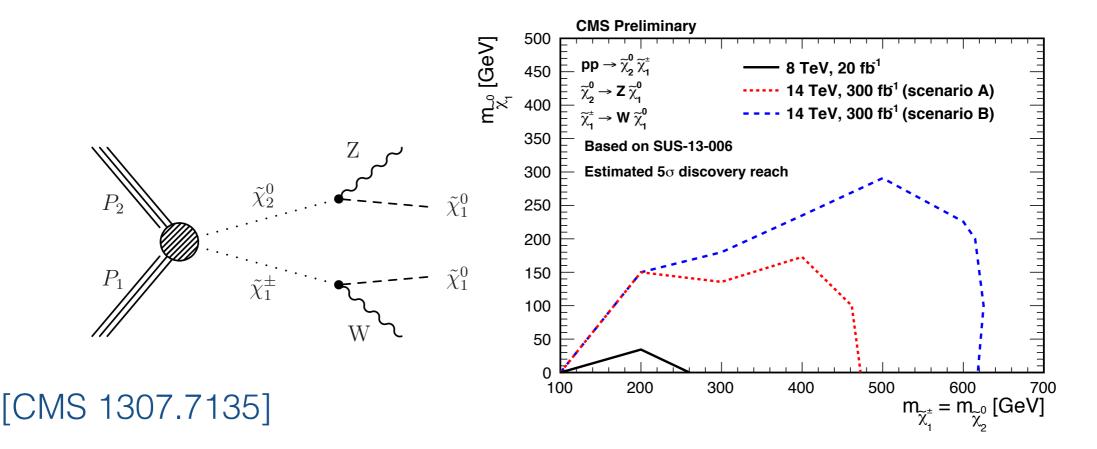
kills the MET signal by having the LSP decay to SM

spreads out energy over multiple final state objects, making them too soft for cuts

limits the phase space for decay particles, lowering the average energy and the MET lots of tricks that allow lighter stops (and other states) to remain valid

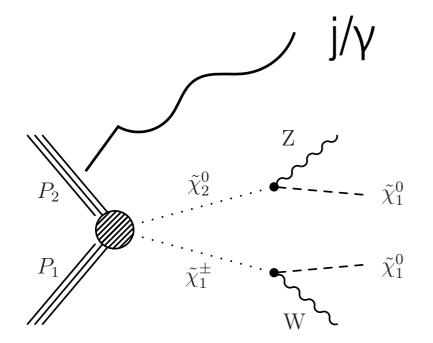
- R-parity violation
- long cascade decays
- compressed spectra

clean environment and knowledge of initial state means lepton colliders are not confused by these tricks: 'loophole free' [Berggren 1308.1461]


plus offer unparalleled precision in mass/mass-difference/spin/ coupling measurements (though fewer recent/detailed studies done for µ-collider)

to take advantage of these benefits, need the energy to make the sparticles: µ-collider

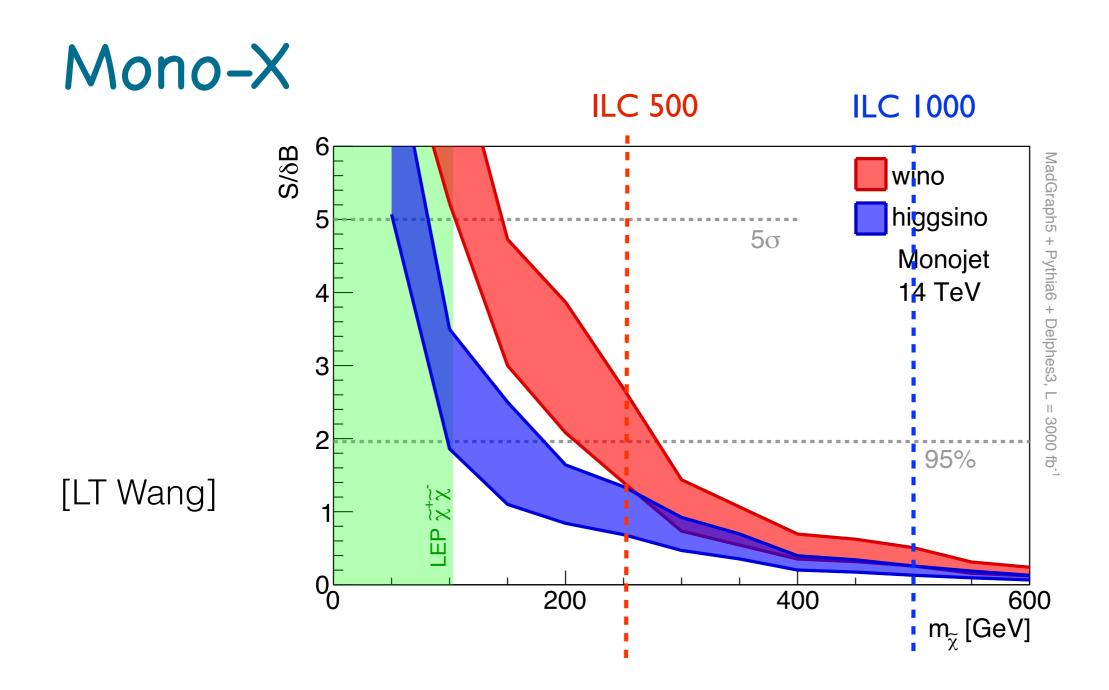
light electroweakinos (Higgsinos/Winos/Bino)


µ must be light for naturalness → **prime** target for LHC/future collider studies

in some SUSY setups, i.e **split SUSY**, electroweakinos are the only TeV-scale particles, **motivated by DM & unification**

electroweakino mixtures can be as heavy as ~3 TeV while remaining viable DM candidates... well beyond reach of LHC/ILC

chargino searches lose sensitivity as mass increases or mass splitting decreases



when states are nearly degenerate, must rely on ISRassisted signals

tricky at LHC due to systematics on $Z(v\overline{v})+j/\gamma$ background,

- ~ no limit at LHC₈
- limited reach even after several ab⁻¹, LHC₁₄

chargino searches lose sensitivity as mass increases or mass splitting decreases

ILC sensitivity near $\sqrt{s/2}$.. no μ -collider study I know of

neutralino/chargino spectrum contains a lot of information about the theory (μ , M₁, M₂, tan β)

full sector must be observed to distinguish between models

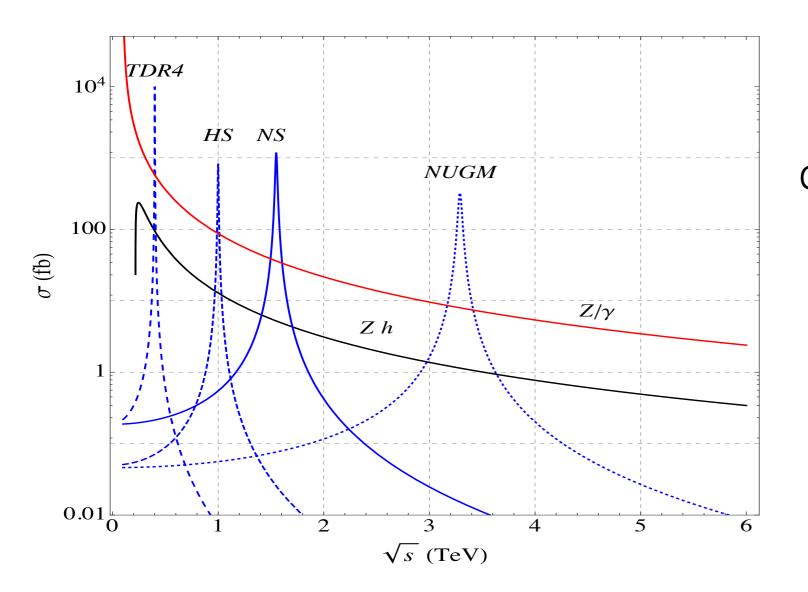
current 'standard' searches focus on $\chi^{\pm}\chi^{0}_{2}$

many extensions of the MSSM (i.e NMSSM) leave their most visible imprint in the EW-ino sector as extra states or modified interactions

precision, high energy studies necessary

s-channel advantage:

all SUSY models contain extra Higgses H/A


from Higgs (h) coupling measurements, we know H/A are essentially decoupled from WW/ZZ and are **narrow**

 $m_H \sim m_A$ not pinpointed by naturalness, but also not tightly bounded at LHC

H/A can be produced as s-channel resonances at a μ -collider. Tuning $\sqrt{s} \sim m_{H}$, rate becomes enormous

Events/year =
$$1.54 \times 10^5$$
 (
 $\times \left(\frac{\mathcal{L}}{10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}}\right) \left(\frac{1 \,\mathrm{TeV}}{m_{H/A}}\right)^2 \left(\frac{BR(H/A \to \mu^+ \mu^-)}{10^{-4}}\right)$

[Eichten, AM '13]

depending on H/A separation, width, and energy resolution, two distinct peaks may be seen

> if $m_H > 2 m_X$ for some superpartner (electroweakinos!), $pp \rightarrow H/A$ is a new SUSY source

even at ~few % BR, pp \rightarrow H/A \rightarrow XX can far exceed other X production modes

nasty scenarios still exist...

rs, ϕ_i , are gauge singlets. In the limit $m_{\phi} \gg v$, we may

segrate out the ϕ_i and express their effects in terms

cancellation of quadratic sensitivity of Higgs mass does not require top-partner has QCD color, just the same # of d.o.f.

could have a SUSY where the stop is not colored under our QCD! 'Folded Supersymmetry' [Burdman, Chacko et al '06]

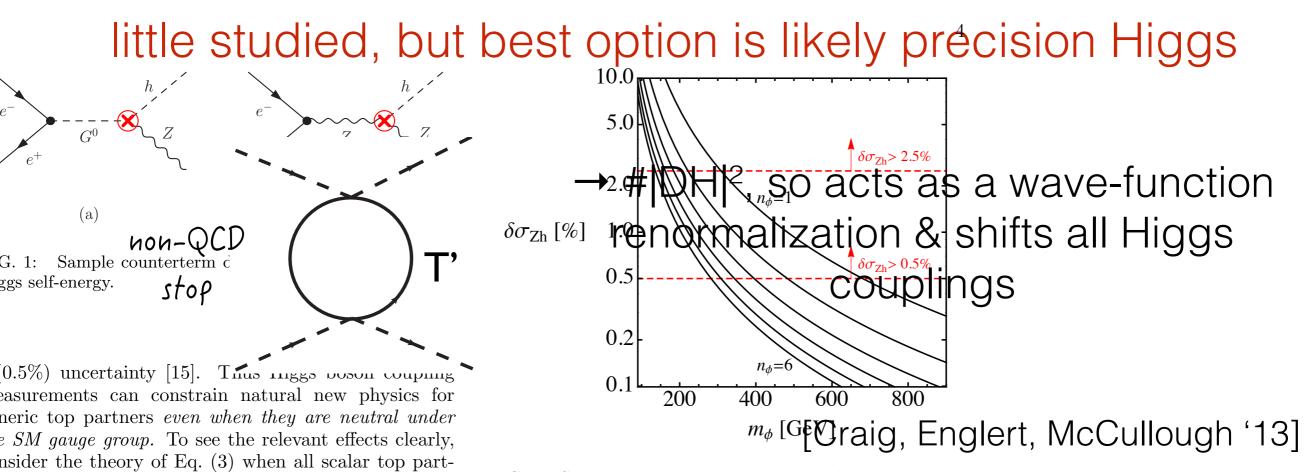
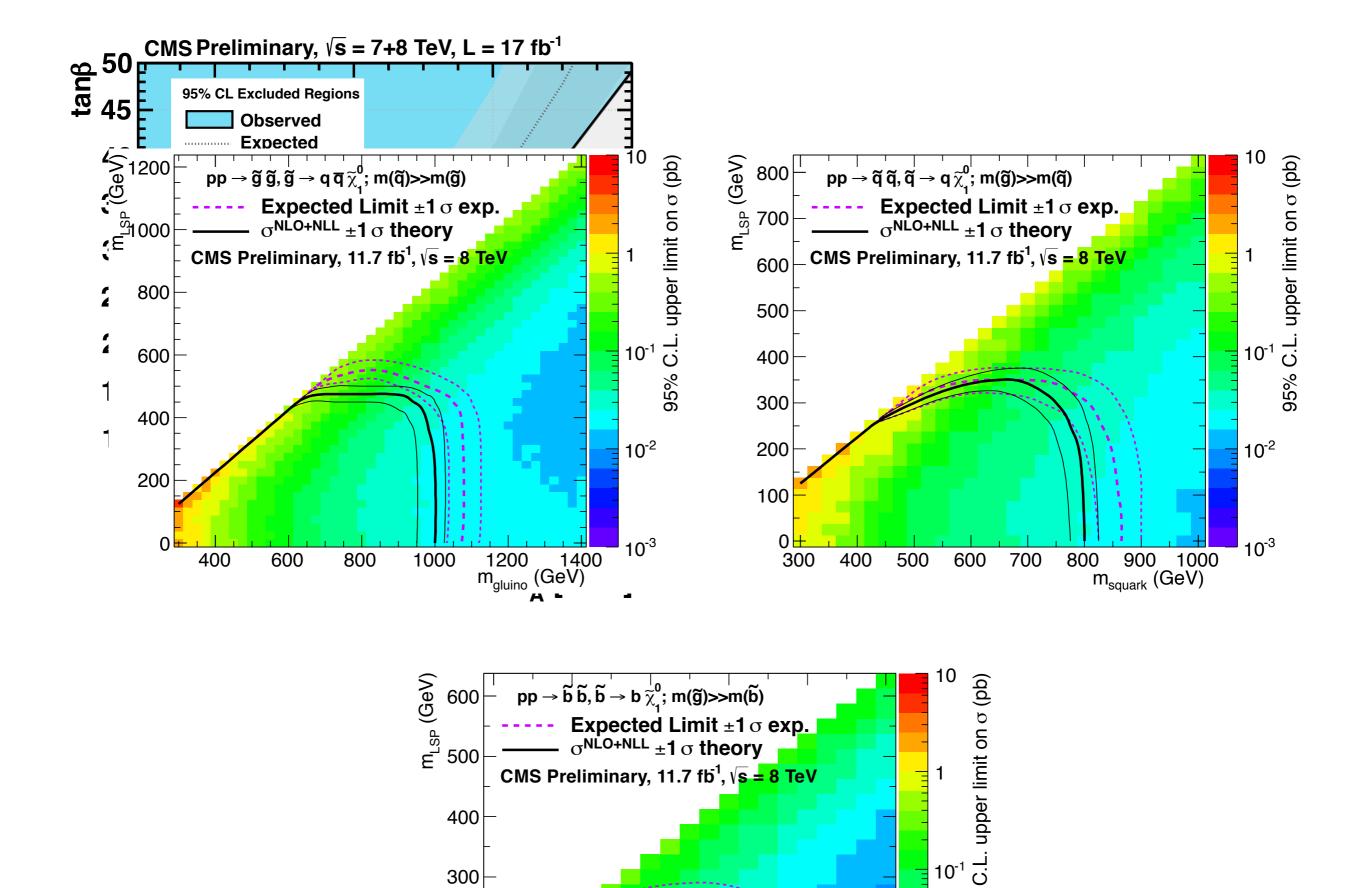


FIG. 2: Scalar top-partner corrections to the Higgs associated production cross-section at a 250 GeV linear collider as

Conclusions

direct LHC constraints and $m_h = 126$ GeV have cut a swath out of SUSY parameter space

Natural' spectra remain the least constrained and are a main goal for LHC14 + beyond (m_{stop}, m_{inos} < few TeV)


to thoroughly search for &, if found, measure SUSY, a **high-energy, high precision** lepton collider is the best tool

if µ-collider is the best combination of these traits, its the machine to use (added bonus of s-channel H/A factory)

updated, detailed studies of µ-collider capabilities for precision SUSY/DM studies motivated

more detailed limits

