

Muon Collider SR and IR Magnets

Alexander Zlobin *Fermilab May 29, 2014*

Charge

- Review the current activities in your area and summarize key advances
- Provide a prioritized list of activities
- Provide a list of activities that will be completed by the end of this fiscal year
- Present activities that, in your opinion, should be transferred to GARD

Outline

- Goals, milestones, organization
- Magnet needs & requirements
- Baseline magnet technology and approach
- Status of SR and IR magnet studies for
 - 1.5 TeV MC
 - 3 TeV MC
 - 125 GeV HF
- Magnet scale up to 5-6 TeV MC
- Nb₃Sn magnet modeling status and needs
- Higher field magnets and R&D issues
- Summary

Goals, Milestones and Organization

- Main goals of MC SR and IR magnet studies
 - provide realistic input for the lattice and IR design analysis and optimization, beam dynamics and radiation protection study
 - identify key magnet issues to be addressed during an R&D phase
- Milestones
 - FY10-11 1.5 TeV MC
 - FY12-13 3 TeV MC
 - FY13-14 125 GeV HF
 - FY14-15 5-6 TeV MC
- Organization
 - Task 29M.03.03.01.01 "FNAL: General Magnet Design WP"
 - Small effort ~0.3 FTE/year
 - Close collaboration with MAP Collider (Yu. Alexahin) and MDI (N. Mokhov) working groups

Magnet needs & Requirements

- MC SR includes Interaction Regions, Chromaticity Correction Section, Matching Section and Arc
- Key machine requirements for MC SR magnets
 - High nominal fields to achieve highest possible luminosity
 - Sufficient operation margin to work at high dynamic heat load
 - Accelerator field quality in beam area at operation fields
 - Dipole field in some IR quadrupoles to reduce the detector background
 - Combined quadrupoles/dipoles to spread the decay neutrino flux
 - Appropriate aperture to accommodate muon beams, magnet cryostat, cooling and radiation protection systems
- Magnet operation requirements
 - Coil pre-stress and Lorentz force management
 - Coil cooling
 - Magnet quench protection
 - Magnet protection from radiation

Baseline Approach

- High fields required for MC call for advanced accelerator magnet technologies beyond traditional Nb-Ti magnets limited to B_{op}~8 T
- Present focus on Nb₃Sn magnets– baseline approach
 - $-B_{nom}=10 T$
 - large operation margin >20%
 - mature magnet technology (B_{op}<12 T) thanks to GARD and LARP work during past two decades
- Conductor present technology limit

 $-1 \text{ mm high-}J_c \text{Nb}_3\text{Sn strand}$

- wide 40-42 strand Rutherford cables

1.5 TeV MC: Arc and IR Magnets

- Arc magnets
 - B_{op}=10T, G_{op}=200 T/m, 20 mm×10 mm beam aperture
 - Open midplane D and large-aperture cos2θ Q
 - Results
 - 10 T with relatively low operation margin ~12%
 - good field quality only in ~30% of coil aperture
 - large dynamic heat load in D ~25 W/m (~5% level)
 - Open mid-plane in D does not help => internal absorber => larger aperture
- IR magnets
 - B_{op}=8 T (D), B_{op}~11 T (Q)
 - Results
 - B_{des}=14-15 T with 2-layer coils
 - 20-30% (Q) and 45% (D) operation margin
- W masks and inner absorbers

B1, 160 mm

A.V. Zlobin | MAP Spring Meeting (FNAL, 27-31 May 2014)

3 TeV MC: Arc and IR Magnets

 $\sqrt{\beta_{x,y}(m)}$ $D_{y}(m)$

10

D, 150 mm

3 TeV MC (FF triplet)

Q/D, 150 mm

 $5\sigma_{v}$

- Arc magnets
 - B_{op}=10.4 T, G_{op}=31-85 T/m, B_{op}=8-9T, 56 mm×26 mm
 - 15 cm aperture $\cos\theta$ D and combined Q/D
 - Elliptical liner with shifted bore
 - Results
 - B_{op}=10.4 T with ~30% margin at 4.5 K => 2-layer coils
 - B_{op} ~8-9T and G_{op} ~80T/m with ~20% margin (B_{coil} ~18 T) at 4.5 K => nested Q/D with 4-layer coils
- IR magnets
 - B_{op}=8 T (D), B_{op}~11 T (Q)
 - Aperture 80-180 mm
 - Results
 - B_{des}=14-15 T with 2-layer coils
 - 20-30% (Q) and 45% (D) operation margin
- Tungsten masks and inner absorbers
- Work in progress (FY14)
 - energy deposition, absorber and coil aperture optimization

125 GeV HF: CCS, MS, Arc and IR Magnets

- CCS, MS and Arc magnets
 - Max B_{op} =10 T (D), max G_{op} =36 T/m (Q)
 - Beam aperture: 92 mm (Arc), 231 mm (MS,CCS)
 - defined in arc by beam sagitta in dipoles
 - Large aperture cosθ Dipoles and cos2θ Quads
 - coil ID 16 cm (Arc) and 27 cm (MS, CCS)
 - Results
 - Max B_{op}=10 T with ~30% margin at 4.5 K (B_{max}~14 T) with 2-layer dipole coils
 - Max G_{op}~36 T/m with ~60-80% margin at 4.5 K (max B_{coil} ~15 T) with 2-layer quadrupole coils
- IR magnets
 - IR magnet aperture is large 32-50 cm
 - Results
 - B_{des}~17-18 T requires 6-layer coils for quench protection and to limit maximum coil stress
 - 20-50% operation margin in IR magnets
- W masks and inner absorbers

Q3, 500 mm

Q2,4, 500 mm

Q1, 320 mm

B1, 500 mm

Magnet scale up to 5-6 TeV MC

- 125 GeV HF
 - IR magnet aperture is large ID=32-50 cm
 - arc magnet ID=16 cm
 - CCS, MS magnet ID=27 cm
- 1.5 TeV and 3 TeV MC
 - IR magnet aperture 8-18 cm
 - arc magnet aperture ~15 cm
 - CCS, MS magnets are similar to arc and IR
- Magnet requirements for 1.5 TeV and 3 TeV are quite similar
 - replace open midplane dipoles in 1.5 TeV machine with cos-theta dipoles used in 3 TeV machine
- 5-6 TeV MC
 - Extrapolation to 5-6 TeV machine
 IR and SR magnet aperture
 ~20 cm

Nb₃Sn Magnet model R&D

- Coil aperture: 20-30 cm
- Design field: B_{max}~15 T
- Magnet types: dipoles, quadrupoles, nested Q/D magnets
- R&D issues: mechanical structure and stress management, quench performance, field quality, quench protection, etc.

Higher Field Magnets

Coil width (m)

(A/mm2)

- Higher fields in MC SR allow higher luminosity or lower Proton Driver power
- Magnet target parameters
 - B_{op}=15-20 T, 20% margin => B_{des}=18-25 T !!!
- 15-20 T magnet issues
 - Large stored energy and Lorentz forces ($\sim B^2$)
 - Quench protection and stress management
 - Cost (~ *coil width*)
 - 15 T Nb₃Sn magnets: w~15 cm
 - $J_{c}(12T, 4.2K) = 2.5 \text{ kA/mm}^{2}$
 - 20 T HTS/LTS magnets: w_{tot}~20-25 cm •
 - 10 T HTS insert: w~7 cm for J_F(20T,4.2K)=450 A/mm²
 - 15 T Nb₃Sn section: w~15 cm, ID~40-50 cm
- **R&D** directions
 - Increase Nb₃Sn and HTS conductor J_F
 - Develop high-current Nb₃Sn and HTS cables
 - Solve stress management and quench protection $\frac{1}{2}$ problems $\frac{1}{2}$ Demonstrate quench performance and field $\frac{1}{2}$
 - quality for large-aperture Nb₃Sn and HTS magnets

Outside of MAP scope and resources!

A.V. Zlobin | MAP Spring Meeting (FNAL, 27-31 May 2014)

Summary

- Magnet studies for 0.125, 1.5 and 3 TeV MC are almost complete
- Next steps
 - SR and IR magnets for 5-6 TeV machine small extension of the present concepts
 - Corrector, CCS and MS magnets could be postponed
 - Cryostat concept integrated with W absorbers and masks will be developed this FY
- 10 T Nb₃Sn magnets *baseline approach*
 - magnet technology is *available* from LARP and GARD
 - some focused R&D for ~20-30 cm aperture Nb₃Sn dipoles and nested Q/D will be needed
- Higher field magnets outside of the MAP scope and resources => GARD
 - 15 T Nb₃Sn magnets with coil ID~20(40) cm, B_{des}~18 T new class of Nb₃Sn accelerator magnets
 - 20 T HTS/LTS magnets (10 T HTS insert) with ~20 cm bore, B_{des}>25 T
 new magnet technology
 - significant R&D effort is needed!!!