Beam Instabilities for the Higgs Factory

Alexey Burov Fermilab

MAP meeting, Fermilab, May 2014

Parameters of the Present Design

Parameter	Unit	Value
Circumference, C	m	299
β*	cm	2.5 (1.5-10)
Momentum compaction, α_p	-	0.0793
Betatron tunes	-	4.56 / 3.56
Bare lattice chromaticity	-	-124 / -197
Synchrotron tune* (100kV, 200MHz)	-	0.002
Number of muons / bunch	10 ¹²	2
Normalized emittance, $\boldsymbol{\epsilon}_{\perp N}$	π·mm·rad	0.3
Long. emittance, $\epsilon_{\parallel N}$	π·mm	1.0
Beam energy spread	%	0.003
Bunch length, σ_s	cm	5.64
Beam-beam parameter	-	0.0072
Repetition rate	Hz	30
Average luminosity	10 ³¹ /cm ² /s	2.5

*) Without wake-fields and longitudinal beam-beam effect

Transverse plane: formulas

• Head-tail growth rate, in the air-bag approximation:

$$\tau_l^{-1} = -\frac{N_{\mu}r_0c}{4\pi\gamma T_0\omega_x}\int_{-\infty}^{\infty} d\omega \operatorname{Re} Z_x(\omega)J_l^2\left(\omega\frac{\hat{z}}{c} - \chi\right)$$

$$Z_{x}(\omega) = \frac{\omega_{x}}{c} \oint Z_{x}(\omega, s) \beta_{x}(s) ds$$

• For a thick resistive wall, the local impedance scales as

 $Z_x(\omega,s) \propto 1/b^3(s) \propto 1/\beta_x^{3/2}$

yielding the total impedance

$$Z_x(\omega) \propto \oint \frac{ds}{\sqrt{\beta_x(s)}} \cong C \sqrt{\frac{Q_x}{R}}$$

Transverse plane: results

• For

$$N_{\mu} = 2 \cdot 10^{12}; \ Q_x = 4.56; \ Q_s = 0.002; \ \eta = 0.08; \ \Delta p_{\rm rms} \ / \ p = 3 \cdot 10^{-5};$$

- tungsten wall with the conductivity $\sigma_w = 1.8 \cdot 10^{17} \text{ s}^{-1}$,
- the chromaticity $\xi = 5$, the aperture $b = 4.5\sigma_x$, the growth rate comes out:

$$\tau_1^{-1} \cong 0.5 \cdot 10^{-5} \,\omega_0 = 30 \mathrm{s}^{-1}$$
.

- The geometrical impedance can be estimated assuming its longitudinal value $Z_{\parallel}/n = 0.10$ hm
- After application of the Panofsky-Wenzel theorem, this leads to doubling of the total transverse impedance. Thus, with 1ms of the lifetime, there is a safety factor of ~100 for the transverse instabilities.

 \bullet

Longitudinal plane: formulas

• Synchrotron frequency shift due to the potential well distortion:

$$\Delta \omega_{s} = \frac{N_{\mu} r_{0} c \eta}{2 \pi \omega_{s} \gamma C} \int_{0}^{\infty} d\omega \exp\left(-\omega^{2} \sigma_{\tau}^{2} / 2\right) \omega \operatorname{Im} Z_{\parallel}(\omega)$$

• With the resistive wall impedance, this yields:

$$\frac{\Delta Q_s}{Q_s} \approx 0.2 \frac{N_{\mu} r_0 \eta R^2 \overline{\delta}}{Q_s^2 \gamma \sigma_s^3 \overline{b}}; \quad D = \frac{V_Z}{V_{RF}} \approx 2.5 \frac{\Delta Q_s}{Q_s}$$

• where $\overline{\delta} = c / \sqrt{2\pi \sigma_w / \sigma_\tau}$ and $\overline{b} = 4.5 \sqrt{R \varepsilon_n / (\gamma Q_x)}$ are the average skin depth and aperture.

Longitudinal plane: results

• For the normalized rms emittance $\varepsilon_n = 0.2$ mm, this yields as high as

$$\Delta Q_s / Q_s \approx -0.6; \quad D \approx 1.5$$

- With the mentioned geometrical impedance, this number doubles. That high number of the potential well distortion means that one should expect up to ~50% of the bunch lengthening with some energy widening.
- This effect could be probably reduced by means of the second harmonic RF.
- It was shown by V. Balbekov [4] that Robinson instability should not play a role for the Higgs Factory.

References

- [1] Y. Alexahin, Preliminary Design of the mu+mu- Higgs Factory Ring Lattice, MAP-doc-4351-v1 (2012).
- [2] A. Chao, "Physics of collective beam instabilities in high energy accelerators", Eq. (6.213), p. 350, J. Wiley & Sons, 1993.
- [3] Ibid, Eq. (6.58), p. 291.
- [4] V. Balbekov, "Beam loading and longitudinal instabilities at the Neutrino Factory and Muon Collider", MAP Note 4363, 2013.

Many thanks!

Backup slides