

Overview of a cooling concept with vacuum rf technology

BROOK

Diktys Stratakis (on behalf of the VCC team) Brookhaven National Laboratory

MAP Spring Meeting, FNAL, Batavia IL

May 28, 2014

Motivation

- Goal: Design & simulate a complete cooling channel
- Effort will be based on a Vacuum Cooling Channel (VCC) concept

Outline

- Review of Vacuum Cooling Channel (VCC) concept
- Review key parameters needed (magnets, rf, absorbers)
- Show a "End-To-End" simulation that satisfies MAP emittance goal
- Major accomplishments after Feb. 2014 DOE review
- What we learned from the VCC Workshop (May, 2014)
- Outlook
- Summary

Accomplishments after DOE Review

- Major accomplishments after Feb. review:
 - Optimization algorithms for fast tracking (Stratakis)
 - Design and simulation of matching sections (Palmer, Stratakis)
 - Further cooling: From 0.33 to 0.28 mm transversely (Stratakis)
 - Mechanical & thermal analysis of Be windows for VCC (Luo)
 - Magnet design feasibility study for VCC (Borgnolutti, Prestemon, Witte)
 - Design of a transverse bunch-merge for VCC delivered (Bao)
 - Theor. framework to predict VCC effectiveness (Neuffer, Stratakis

5

5

- First pass on final cooling with VCC (Palmer, Sayed)
- Hosted a VCC workshop at LBNL (May 2014)
 - Important lessons learned on rf and magnet design

Vacuum RF Cooling Channel

Cooling after merging (8 stages)

Multivariable Optimization for VCC

- Nelder-Mead algorithm: Objective is to maximize luminosity.
- Integrated in NERSC with ICOOL-MPI
- Applied for VCC optimization: 8 parameters each time

Matching to 6D VCC from Phase-Rotator

- Matching with 9 solenoidal coils
- ~4% gain in performance
- Allows reducing aperture $35 \rightarrow 30$ cm

Parameter	Baseline	With Matching
Cool rate (trans.)	2.13	2.19
Cool rate (long.)	2.76	2.81
Transmission	65.2% (132 m)	68.8% (132 m)

Lattice Space for Cryostats

Parameter	Baseline	With Space
Cool rate (trans.)	1.49	1.49
Cool rate (long.)	1.30	1.35
Transmission	87.2% (55 m)	86.4% (55 m)

• Space generated for diagnostics, cryostats

Cooling with LiH vs. LH

- Post-Merger has 8 stages
- Two alternative cases:
 - Baseline: First 4 stages with liquid of hydrogen (LH) and last 4 with Lithium Hydride (LiH)
 - Alternative: All stages with LiH
- Quality factor, Q is used for lattice evaluation
- Both lattices reach the MAP goal for the emittances
- Baseline more promising

$$Q_6(z) = \frac{d\epsilon_6/\epsilon_6}{dN/N}$$

Wedges vs. Cylinders

- For LH absorber it is easier to construct a cylindrical absorber
- Slightly degrades cooling

Parameter	Wedge (Base)	Cylinders
Cool rate (trans.)	1.48	1.46
Cool rate (long.)	1.23	1.18
Transmission	90% (55 m)	90% (55 m)

14

Magnet Design (last stage)

• Middle, outer: Nb-Ti

 Collaborating effort: Borgnolutti, Prestemon, (LBNL) Witte (BNL)

Mechanical Model

- Azimuthal strain in the inner solenoid (19%) is within Nb₃Sn irreversible limit (25%)
- Stress for Nb-Ti is less than its yield strength (300 Mpa)

Be Windows Simulation Model

Stage	f (MHz)	rWin (cm)	rStep (cm)	t0 (mm)	t1 (mm)
1	325	30	16	0.3	1.4
2	325	25	15	0.2	0.8
3	650	19	10	0.2	0.6
4	650	13.2	11.4	0.125	0.38

• Stepped Be window: All stages have two steps.

Channel before merge, ONLY!	Parameter	Baseline	With Be
	Cool rate (trans.)	11.8	10.7
	Cool rate (long.)	20.7	18.0
	Transmission	49.1%	46.0%

Recommendations from VCC workshop

What we learned from workshop 1

- RF Cavity Design:
 - A separation of 5.0 cm (2.5 cm each) needs to be added between cavities for tuners and flanges
 - Cavities can be powered by a curved waveguide-> simplifies the focusing magnet (no need to split the coils).

What we learned from workshop 2

• Magnets:

•

- Stage 8 (last stage) looks feasible.
- Some stages need to be modified. Coils require at least 5 cm extra space in the longitudinal direction to place He bath and coil feeds in/out.
- Calculation of forces & stresses for earlier stages required

Future work towards IBS

- Absorbers:
 - We will evaluate a channel with LiH absorbers only
- Lattice Design work
 - Redesign stages to allow more space for coils and rf
 - Add extra space for diagnostics to all stages
 - Matching to a 3T solenoid
- RF windows
 - Calculate deformation, stresses, freq. detuning for Stage 1
- Report write-up by end of FY 14.

Other VCC talks in this MAP Meeting

- Vacuum RF/ Be window Update
 - May 28 at 11:45 am: Bowring, Luo
- Magnet requirements
 - May 28 at 1:30 pm: Prestemon
- Initial Cooling
 - May 28 at 5:15 pm: Alexahin
- Final Cooling
 - May 29 at 8:15 am: Sayed
- Bunch Merge
 - May 29 at 9:30 am: Bao

Five VCC Contributions to IPAC

- Cooling with vacuum technology overview
 - Poster TUPME020
- Theoretical framework for predicting efficiency of VCC
 - Poster TUPME021
- Magnet design feasibility for VCC
 - Poster WEPRI103
- Cooling with a hybrid channel with gas filled rf
 - Poster TUPME024
- Final cooling
 - Poster TUPME019

Summary

- We defined a concept for 6D cooling based on a rectilinear channel
- We specified the required magnets, cavities and absorbers for the cooling channel before & after the merger.
- "End-to-end" simulation: Final emittances are: 0.28 mm (T) [0.30 mm] and 1.57 mm (L) [1.50 mm].
- Magnet feasibility study for the last VCC stage with encouraging results.
- Mechanical and thermal analysis of rf windows initiated.
- Some stages need modifications.