

Initial Baseline Selection Process

in view of recent P5 recommendations regarding MAP

Robert D. Ryne Lawrence Berkeley National Laboratory

Presented at the MAP 2014 Spring Meeting May 27, 2014 Historical context: After ~30 years we are on the verge of having initial designs of all key accelerator systems for muon-based neutrino factories and colliders @ Fermilab

What does the P5 report mean for MAP and for the IBS?

"... reassess the Muon Accelerator Program (MAP), incorporating into the general accelerator R&D program those activities that are of broad importance to accelerator R&D, and consult with international partners on the early termination of MICE. In addition, in the general accelerator R&D program, focus on outcomes and capabilities that will dramatically improve cost effectiveness for mid- and far-term accelerators."

- As has already been mentioned this morning, MAP as we know it will change at the close of 2014
- Some activities will continue under GARD
- Exact details remain to be worked out
 - we anticipate that design activities related to Neutrino Factories will be incorporated into an "Accelerator Concepts" GARD program
 - we anticipate that design activities for a collider will receive reduced priority

- These changes have nothing to do with MAP technical progress, which is viewed as highly successful
- The changes reflect the near- and mid-term priorities set forth by P5 and accepted by HEPAP.
 - These priorities push the need for muon-based accelerators further into the future

Muon accelerators in the broader context

- As is clear from the P5 report and the Q&A following the P5 presentation, muon accelerators are viewed alongside ILC and future circular colliders as facilities of the late- mid-term and the far-term
- Each of these has pros & cons
- The sheer size of ILC and FCC makes them very expensive
 - recall the P5 recommendation to focus on R&D that will "dramatically improve cost effectiveness for mid- and farterm accelerators"
- ILC is not favorable power-wise for scaling much beyond 1 TeV
- Muon accelerators have major technological challenges, particularly with regard to cooling, hence feasibility as a collider is an open question

Muons in context, cont.

- Summary:
 - ILC: big, O(\$10 billion), limited energy-frontier capability, no impact to US domestic facilities
 - FCC: big, \$30-40 billion, energy frontier, no impact to US domestic facilities
 - muon: small, potentially least expensive due to reduced size, impacts domestic intensity- and energy-frontier facilities, big technology challenges, feasibility not demonstrated

Our policy makers have strong incentive to continue muon R&D due to potential impact to domestic HEP research and potential cost reduction of future facilities

DOE/OHEP is not giving up on muon accelerators

- P5 recommended continuing some muon R&D under GARD
- Ending all muon R&D is counter to the P5 report
 - "maintain a stream of science results while investing in future capabilities, which implies a balance of project sizes; maintain and develop critical technical and scientific expertise and infrastructure to enable future discoveries."
 - "in the general accelerator R&D program, focus on outcomes and capabilities that will dramatically improve cost effectiveness for mid- and far-term accelerators."
 - "Our society's capacity to grow is limited only by our collective imagination and resolve to make long-term investments that can lead to fundamental, gamechanging discoveries, even in the context of constrained budgets."

Muon accelerators, if feasible, would be a game-changing technology

 OHEP is directing us to reduce and refocus our muon activities to the medium-term

Initial Baseline Selection (IBS) Prior to P5

- A site-specific set of designs for staged facilities at Fermilab
 - nuSTORM, NUMAX, Higgs Factory, Multi-TeV colliders
- Designs based on available knowledge at the time
 - Choose our initial baselines, then study in more detail and optimize in MAP FP-II
- Designs have evolved due to opportunities identified by MASS
 - better staging, reduced cost

Initial Baseline Selection (IBS) Post-P5

Key differences compared with present IBS:

- Target is medium-term neutrino facilities
 - long-term (collider) design will be phased out
- More focused
- Still includes muon cooling
 - but since muon collider design will have reduced priority, some cooling subsystems will not be considered

The IBS process has had a huge impact on moving us from "exploring concepts" to "selecting initial baselines"

- Concept specification
- Lattice files & performance evaluation
- Lattice file sign-off
- Global optimization (where appropriate)
- Interface parameters
- Technology specification
- Technology sign-off
- Final review (+ initial review in some cases)

Refocused effort under GARD will have reduced scope and budget

- Proton Driver: No requirement for multiple beams on target
- Front End: No requirement for 4 MW upgrade
- Cooling: Focus on Initial Cooling and (what was formerly called pre-merge) 6D cooling
- Acceleration: only up to NuMAX energy
- NF Decay Rings: intact
- Collider Ring: reduce design activity and document
- Collider MDI: reduce design activity and document
 - but some energy deposition studies will remain
 - Front End; Muon acceleration for NuMAX

Summary

- As Mark has stated earlier this morning:
 - prepare for DOE review of MAP in early July
 - prepare a transition plan under which certain MAP activities will be carried out under GARD
- IBS process will transition into an "Accelerator Concepts" GARD effort starting in FY15
 - this MAP meeting is an opportunity to begin planning this transition, identify & prioritize design activities to be transferred to GARD