

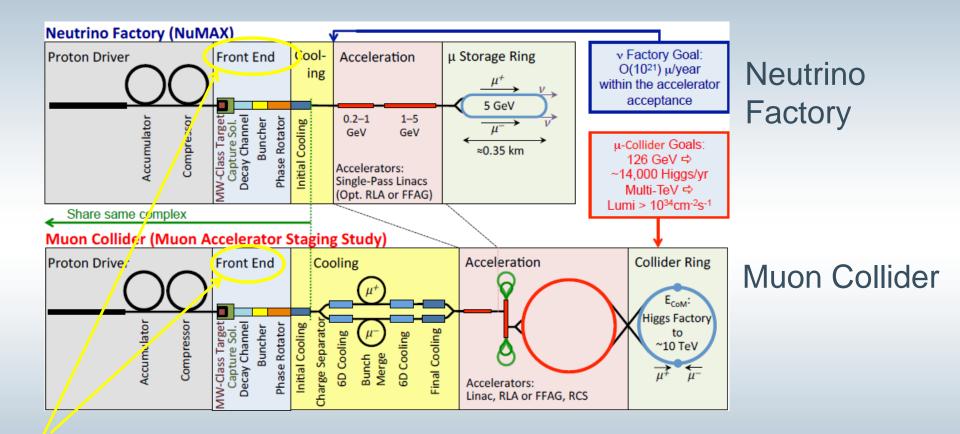
1

Muon Accelerator Front-End Status

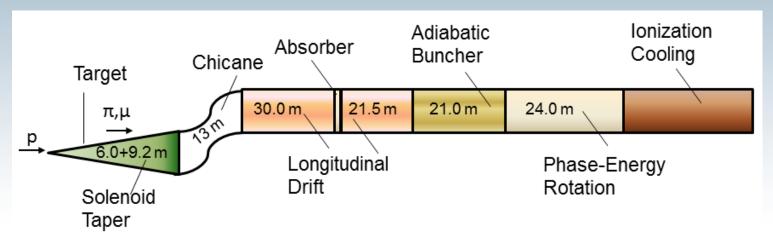
Diktys Stratakis

Brookhaven National Laboratory

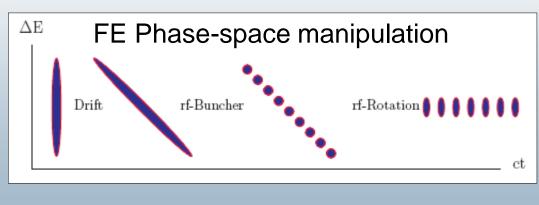
MAP Collaboration Meeting


May 29, 2014 Fermi National Laboratory, Batavia IL, USA

Acknowledgement


A. Alekou, J.S. Berg, X. Ding, H. Kirk, K. McDonald, D. • Neuffer, R. B. Palmer, C. T. Rogers, R. Ryne, P.Snopok, H. Sayed, B. Weggel

Applications of Muon Accelerators



 Front-End is a core building block of a Neutrino Factory and a Muon Collider

Front-End (FE) channel

- Major components include:
 - Target & capture
 - Chicane
 - Decay channel
 - Buncher
 - Phase-Rotator

Outline

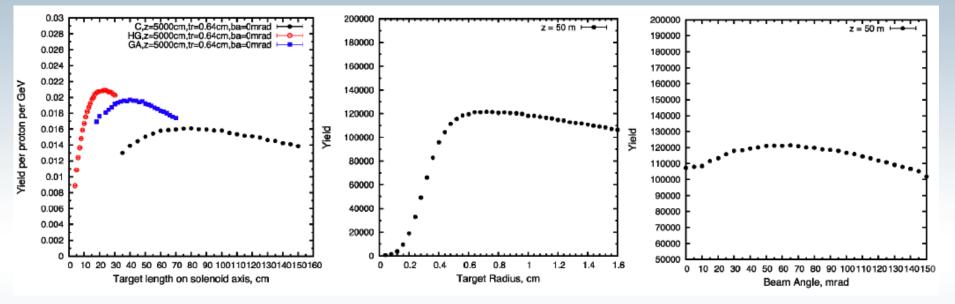
- Front-end major sub-systems
 - Target & Capture Solenoid
 - Chicane
 - Drift Channel
 - Buncher
 - Phase-Rotator
- Future work & challenges
- Summary

Accomplishments after DOE Review

- Conceptual design of a carbon target, optimized for 1 MW
 6.75 GeV proton beam.
- Feasibility study of a magnet design to capture the produced muon beam.
- Following the findings from numerical simulations, the field drops from 20 T to 2 T within a short 6 m taper length.
- Previous discrepancies in modeling the chicane/ absorber system are now understood.
- Chicane is now optimized and integrated into the FE
- Reduced substantially the number of Buncher & Phase Rotator rf frequencies.

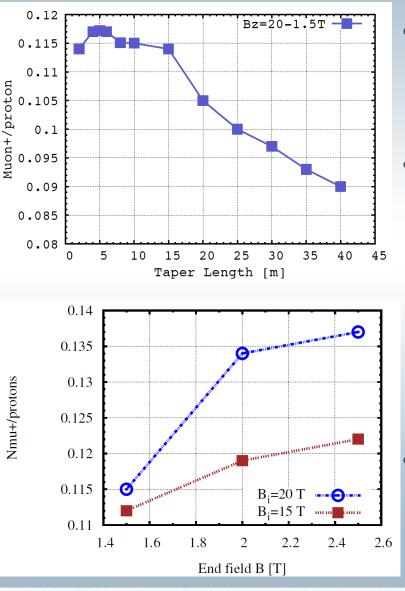
Target & Capture system

- Proton Driver:
 - 6.75 GeV (kinetic energy) proton with 3 ns pulse
 - 1 MW initial beam power
 - NF: 50 Hz rep rate, MC: 15 Hz rep rate

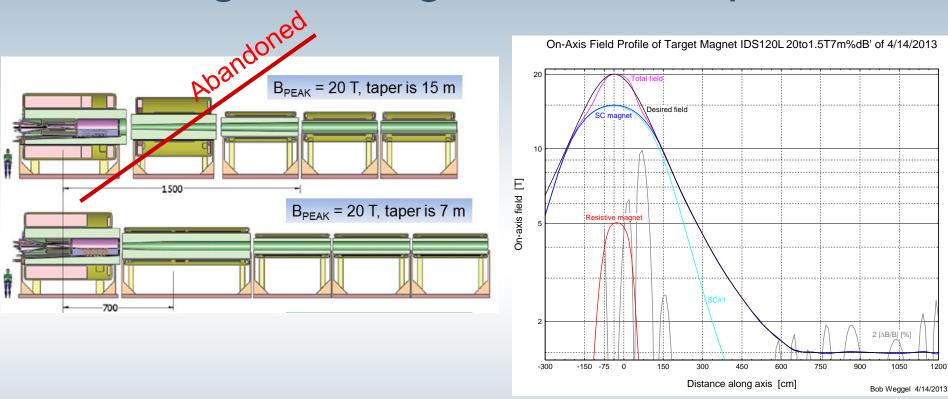

- Target Concept:
 - Graphite target
 - Inside 20 T magnet
 - Tilted in magnetic axis
 - Proton beam dump via graphite rod downstream of the target

7

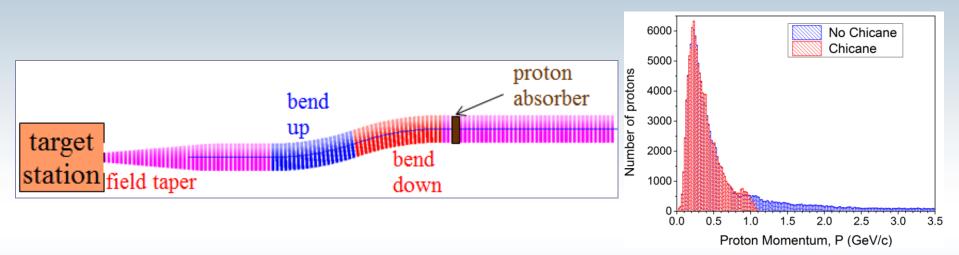
Proton beam tube Upstream proton beam window to a construct of the second decision of the s


Details: K.T. McDonald Talk on May 30th, 8:30 am

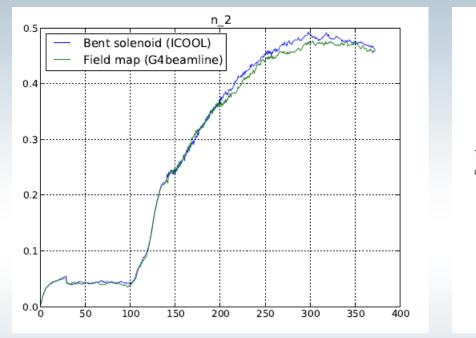
Target System Optimizations

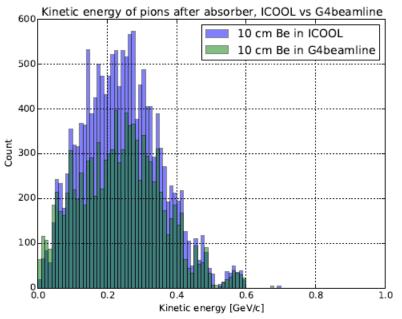

- Optimum C target: len.=80 cm, rad=8 mm, tilt = 65 mrad
- Optimum Graphite beam dump: len.=120 cm, rad=24 cm to intercept most of the proton beam
- Details: X. Ding, Talk on May 29th, 1:55 pm

Optimizations of Muon Capture

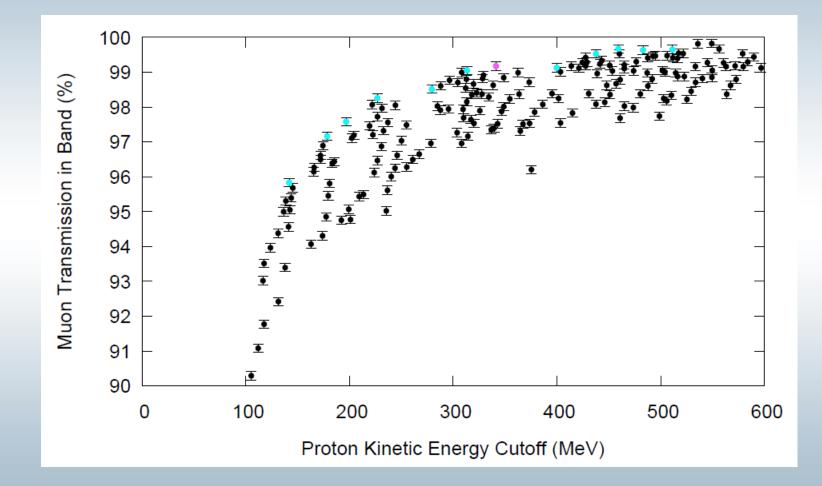

- Global optimization for:
 - Peak target field, end field, length of field taper
- Results showed:
 - Shorter taper leads to higher muon yield (~6 m)
 - Favorable to increase the baseline end field (2.0 T)
 - Higher target peak field improves performance (20 T)
 - Details: H. Sayed Talk on May 29th, 11:10 am

Magnet design for short taper

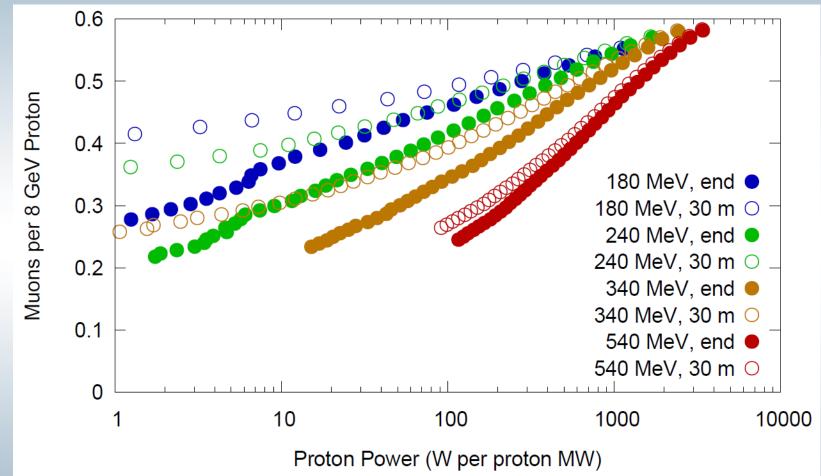

- Magnet design for 5-7 m short taper delivered
- Tapers from 15T 20 T to 1.5-3 T magnetic field
- Implemented to the new Front-End


Front-End Chicane

- High energy particles could activate the entire FE channel
- Bent solenoid chicane induces vertical dispersion in beam
 - High-Momentum particles scrape
 - Single chicane for both muon signs
- Proton absorber to remove low momentum protons

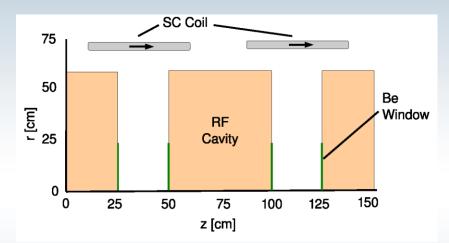

Chicane Modeling (P. Snopok)

- Earlier simulations showed 15% discrepancy between ICOOL & G4BL
- It was thought that this was due the different field model
- Later simulations showed that this was due the Be model in ICOOL


Chicane Optimization I (Berg)

Details: J.S. Berg Talk on May 30th, 8:55 am

13


Chicane Optimization II (Berg)

 Significant tradeoff between muon transmission and downstream proton power

Buncher & Rotator parameters

- Re-designed to match to a 325 MHz cooler
- Buncher (21 m long)
 - 490 to 365.0 MHz (56 freq.)
 - RF voltage: 0.3 to 15.0 MV/m
 - 2.0 T magnetic field
- Rotator (24 m long)
 - 364.0 to 326.0 MV/m (64 freq.)
 - RF voltage: 20 MV/m
 - 2.0 T magnetic field
- Details: D. Neuffer, Talk on Th. May 29th, 2:20 pm

Baseline has 120 different frequencies!

Discretization of rf frequencies

- Our goal is to reduce the number of frequencies.
- Going from 120 to 30 frequencies -> 8% loss

Buncher rf parameters		Rotator rf para	meters	
Frequency (MHz)	Gradient (MV/m)	Frequency (MHz)	Gradient (MV/m)	
493.71	0.30	363.86	20.0	0.12 - 1 rf - pair (120)
482.21	1.24	357.57	20.0	- 4 rf - pair (30) 0 1 - 8 rf - pair (15)
470.27	1.95	352.20	20.0	0.1
458.40	3.38	347.59	20.0	
448.07	4.45	343.65	20.0	
437.73	5.52	340.27	20.0	
427.86	6.60	337.39	20.0	
418.43	7.67	334.95	20.0	ă IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
		332.88	20.0	= = 0.04
409.41	8.74	331.16	20.0	0.04
400.76	9.81	329.75	20.0	
392.48	10.88	328.62	20.0	0.02
384.53	11.95	327.73	20.0	
376.89	13.02	327.08	20.0	
369.55	14.30	326.65	20.0	
		326.41	20.0	z (m)

Six Contributions to IPAC

- Target Concept:
 - Poster: TUPRI008
- Muon Capture Magnet Concept:
 - Poster: THPRI087
- Target Optimizations:
 - Poster: THPRI089
- Muon Capture Optimizations:
 - Poster: MOPRI007
- Chicane Integration in the FE:
 - Poster: TUPME022
- Buncher & Phase-Rotator Discretization:
 - Poster: TUPME023

IBS Schedule

		Concept	Lattice/Layout & Performace		Global Optimization of Internal		Technology	Technology	IBS Review	IBS Initial Review (where		IB Specifications (Dependent on results from
Fro	nt End (incl. Target)	Specification	Eval	Lattice Sign-off	Systems	Interface Params	Specification	Sign-Off	Ready Date	needed)	IBS Review	previous system)
	Target Module	6/2/2014	9/2/2014	10/1/2014	6/23/2015	7/22/2015	3/2/2015	4/1/2015	7/22/2015	1/5/2016		2/3/2016
	Capture Solenoid	6/2/2014	9/2/2014	10/1/2014		7/22/2015	3/2/2015	4/1/2015	7/22/2015		1/5/2016	
	Proton Dump	6/2/2014	9/2/2014	10/1/2014		7/22/2015	3/2/2015	4/1/2015	7/22/2015			
	Chicane	10/1/2014	1/2/2015	2/2/2015		7/22/2015	7/1/2015	7/31/2015	11/2/2015			
	Pion Decay Channel	10/1/2014	1/2/2015	2/2/2015		7/22/2015	7/1/2015	7/31/2015	11/2/2015			
	Buncher/Phase Rotator	10/1/2014	1/2/2015	2/2/2015		7/22/2015	7/1/2015	7/31/2015	11/2/2015			
	FE-Cool Interface Parameters	10/1/2014				7/22/2015						2/3/2016

• We are on good standing based on the IBS schedule:

- A conceptual design for target, capture solenoid and beam dump has been delivered.
- On our way to deliver a concept for chicane, buncher & rotator
- Still a lot of work to do (next slide).

Future Steps

- Specify buncher and phase-rotator parameters for the new chicane & absorber settings [Person A, Person B]
 - Evaluate performance
 - Energy deposition downstream of the chicane
 - Detailed MARS simulation for specific areas
- Repeat the process for different B-fields [Person A, Person B]
- Energy deposition chicane/ target [Person C, Person D]:
 - Detailed studies in the chicane & target for different target configurations
- Finalize buncher & phase-rotator [Either A, B, C. D]
 - Windows and realistic coils