1/15

MICE STEP IV PHYSICS 'DELIVERABLES'

V. Blackmore MAP 2014 Spring Meeting 30th May, 2014 AKA "What will we learn from Step IV?"

- Why MICE?
- What is Step IV?
- What will Step IV tell us?
- Summary

More? See talks by D. Kaplan & A. Bross

Ionisation Cooling

"Cooling" = reduction in phase space MICE will measure a ~10% reduction in emittance to 1% relative precision

Area
$$\cong$$
 emittance, ε
 $x' \cong {}^{p_x}/p_z$
 $M = \begin{pmatrix} (xx) \langle xx' \rangle \langle xy \rangle \langle xy' \rangle \\ \langle xx' \rangle \langle x'x' \rangle \langle x'y \rangle \langle x'y' \rangle \\ \langle xy \rangle \langle x'y \rangle \langle yy \rangle \langle yy' \rangle \\ \langle xy' \rangle \langle x'y' \rangle \langle yy' \rangle \langle yy' \rangle \\ \langle xy' \rangle \langle x'y' \rangle \langle yy' \rangle \langle y'y' \rangle \\ \end{pmatrix}$
where $\langle xy \rangle = \overline{xy} - \overline{xy}$
Liouville's theorem conserves phase space

Measuring "Cooling"

Build a **particle-by-particle** covariance matrix (M) and calculate $\varepsilon_N = \sqrt[4]{\det M}$ \rightarrow if $\varepsilon_{out} < \varepsilon_{in}$, **measured cooling**

Muon Ionisation Cooling Experiment

7/15

MICE Step IV

- One absorber
- No RF, no restoration of longitudinal momentum
- Aim: Demonstrate ionisation cooling without re-acceleration
- Detectors:
 - Time of flight (TOF0/1/2) counters measure (t, x, y, p_z) of individual muons
 - Tracker planes measure (x, y, p_x, p_y) of individual muons
 - KL and EMR for PID

Ionisation Cooling Approximation

8/15

- What do we expect to happen?
 - Step IV \sim 5% reduction in emittance
 - More in Step V

Ionisation Cooling Approximation

Many parameters that we can **tune** and/or **measure**

The MICE Physics Program (**TBD***)

Definition of terms:

Essential: This result must be measured for MICE to achieve its goals. It <u>cannot</u> be delayed until a later Step.

<u>Core:</u> A critical result that could be delayed until a later Step <u>given</u> <u>careful planning</u>.

<u>Optimal:</u> An important result that could be better explored in a later Step.

tep	Result	Priority	Dependencies
,	1. First demonstration of ionisation cooling	Essential	-
	2. Measurement of ionisation cooling with LH2 and LiH absorbers	Core	1.
	3. Initial study of factors affecting performance of ionisation cooling lattices	Optimal	1, 2
	4. Initial study of emittance exchange in an ionisation cooling lattice	Optimal	1, 2
	5. First demonstration of ionisation cooling with re-acceleration	Essential	1
	6. Measurement of transverse emittance reduction and longitudinal emittance preservation in an ionisation cooling lattice	Essential	1, 2
	7. Study of factors affecting the performance of ionisation cooling lattices	Essential	1, 2, (3)
	8. Management of canonical angular momentum in an ionisation cooling lattice	Essential	1, (3), 5, (6, 7)

Physics deliverables depend on number of run cycles... ...Run cycles <u>depend on installation of Step V</u>

T. Carlisle (University of Oxford)

11/15

Change in emittance depends on:

- Absorber material
- Initial emittance
- β at absorber
- Momentum

Can study cooling vs. heating as a function of absorber material and initial emittance.

If initial emittance < equilibrium emittance → heat.

If initial emittance > equilibrium emittance → cool.

With **R**[time]...

Change in emittance depends on:

- Absorber material
- Initial emittance
- β at absorber
- Momentum

Can study cooling vs. heating as a function of absorber material and initial emittance.

If initial emittance < equilibrium emittance → heat.

If initial emittance > equilibrium emittance → cool.

Time (and cryostat) permitting + LiH wedge absorber studies

Beyond Emittance

- Can do more than 'just' measure emittance and benchmark simulations.
- MICE measures (x, y, p_x, p_y, p_z, t) for individual particles
 - Measured as a function of magnetic optics and absorber material
 - Majority of "other physics" is free and complementary to emittance measurement
- Amplitude distributions
- Optics studies ('easy') \rightarrow test momentum acceptance, beam matching
- Transmission studies (easy)
- Particle tracking (easy)
- Muon polarisation (hard)
- Multiple Coulomb Scattering (hard) \rightarrow complement MuScat
- Energy straggling (difficult) \rightarrow compare to theory
- Preparation for Step V physics

Single Particle Amplitude's

- Emittance is a single number that describes the 'average' beam.
- We also measure the amplitude of individual muons
- Mean of the amplitude distribution = 4ε
- More particles <u>at lower amplitude</u> downstream (in Step IV)

Summary

- A lot can be learned from Step IV
- Exactly <u>how much</u> depends on installation of Step V → <u>reacceleration</u> is the ultimate demonstration of ionisation cooling!